首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
近年来,碳捕集利用与封存(CCUS)作为减缓气候变化的关键技术之一,得到国际社会广泛关注。政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)第三工作组报告对CCUS进行了重新定位,并围绕减排潜力、减排成本、综合效益及应用前景等方面,对CCUS相关技术进行了系统全面评估。结论显示,CCUS技术是全球气候目标实现不可或缺的减排技术组合,到21世纪中叶有潜力实现累积千亿吨级减排效应,但当前CCUS技术成熟度整体处于示范阶段,成本较高,减排潜力有待进一步释放。综合考虑CCUS可以有效降低巨额资产搁浅风险、具有良好社会环境效益等因素,我国应结合自身“富煤、贫油、少气”的资源禀赋和基本国情,将CCUS作为战略性技术,统筹政策顶层设计、加速技术体系构建、探索市场激励机制、加强国际科技合作,促进CCUS技术发展。  相似文献   

2.
燃煤电厂作为中国最大的CO2排放源,是中国实现碳中和目标的关键点。CO2捕集、利用与封存(CCUS)技术是目前煤电行业实现深度减排的唯一途径,碳约束情景下,CCUS技术将在实现煤电碳达峰、碳中和目标中发挥不可或缺的作用。研究中首先使用综合环境控制模型(IECM)对燃煤电厂捕集技术环节的成本构成和经济性进行核算,得到中国燃煤电厂逐厂CO2捕集成本和捕集量;其次,基于地质利用封存潜力及分布特征,构建CCUS源汇匹配优化模型,得到碳中和目标下的煤电CCUS项目分阶段布局方案;最后,以优化基础设施建设并通过规模经济降低成本为前提,使用聚类分析方法对煤电CCUS项目集群进行识别,进一步构建改进成本最小生成树模型,得到CCUS项目集群最低成本CO2输送管道网络的路线优化策略。研究表明:碳中和目标约束下,需要对总装机容量约为355 GW的300个燃煤电厂进行CCUS技术改造,2030—2060年间可实现累积减排190.11 亿t CO2。煤电CCUS项目集群主要分布在华中、华北和西北地区,通过建立CCUS枢纽以实现CO2运输基础设施共享,在松辽盆地、渤海湾盆地、苏北盆地和鄂尔多斯盆地优先开展CCUS早期集成示范项目,能显著降低运输成本,推动CCUS技术大规模、商业化发展。  相似文献   

3.
As a hard-to-abate sector, the iron and steel industry is responsible for 22% of China’s total carbon emissions and therefore plays a crucial role in achieving China’s carbon peaking and neutrality target. Nearly 90% of China’s iron and steel output is produced with coal-based blast furnaces, which results in high carbon emission intensity. To peak China’s carbon emissions and achieve the carbon neutrality target, it is essential to accelerate the application of breakthrough technologies such as carbon capture and storage (CCS) and hydrogen-based steel-making. This paper estimates the future CO2 emissions from China’s iron and steel industry in pathways that consider the influence of different technology portfolios, technology maturity, decarbonization of power systems, and future steel production output. The results show that using currently available technology, China’s iron and steel industry can reduce CO2 emissions by more than 50%. However, it cannot achieve the neutrality target without using innovative technologies. By combining conventional strategies with net-zero emission technologies such as CCS and hydrogen metallurgy, approximately 80–90% emission reduction can be achieved, thus leading to a carbon neutrality pathway, which can meet the 1.5°C targets of the carbon budget limit either. In the future, carbon emissions' reduction potential will be influenced by the decarbonization of power systems and the diffusion rate of innovative technologies. To achieve carbon neutrality, it is essential to act sooner and faster.  相似文献   

4.
In order to meet the challenge of climate change while allowing for continued economic development, the world will have to adopt a net zero carbon energy infrastructure. Due to the world’s large stock of low-cost fossil fuels, there is strong motivation to explore the opportunities for capturing the CO2 that is produced in the combustion of fossil fuels and keeping it out of the atmosphere. Three distinct sets of technologies are needed to allow for climate neutral use of fossil fuels: (1) capture of CO2 at concentrated sources like electric power plants, future hydrogen production plants and steel and cement plants; (2) capture of CO2 from the air; and (3) the safe and permanent storage of CO2 away from the atmosphere. A strong regime of carbon accounting is also necessary to gain the public’s trust in the safety and permanence of CO2 storage. This paper begins with an extensive overview of carbon capture and storage technologies, and then presents a vision for the potential implementation of carbon capture and storage, drawing upon new ideas such as air capture technology, leakage insurance, and monitoring using a radioactive isotope such as C-14. These innovations, which may provide a partial solution for managing the risks associated with long-term carbon storage, are not well developed in the existing literature and deserve greater study.  相似文献   

5.
近期发布的IPCC第六次评估报告再次强调了短寿命期温室气体减排对温升减缓的作用。甲烷是最重要的短寿命期非CO2温室气体。在各国提出各自新的减排目标之后,针对甲烷减排的行动方案也越来越多。甲烷减排正在成为下一阶段各国和全球合作的重点领域之一。本文在我国碳减排目标下的能源转型基础上,结合其他非能源活动的减排排放源的减排技术选择基础上,利用IPAC模型对未来甲烷的排放情景进行了分析。在模型设定的两个情景分析基础之上,研究发现,到2050年的能源转型可明显减少能源活动的甲烷排放,和2015年相比能源活动的排放可减少67%。和其他行业相比,能源部门的甲烷减排具有更好的协同性。如果考虑进一步减排甲烷,则需要在考虑其他大气污染物减排的基础上,可通过实现天然气的进一步减排来实现。同时其他部门的甲烷减排也具有很大潜力,低甲烷排放情景可以实现到2050年将甲烷排放减少到1 494万吨,和2015年相比全范围排放可减排58%。  相似文献   

6.
碳捕集、利用和封存(CCUS)技术是世界公认的最有前景的碳减排技术之一,它在不改变能源结构的前提下,实现碳的有效封存,是协调经济发展和环境可持续的双赢策略。为了探讨“一带一路”沿线主要国家CCUS技术的发展前景,文中基于CO2封存机理和CO2在油藏和气藏中理论封存量的评估方法,分析了“一带一路”沿线主要国家CO2的封存潜力。结果表明,“一带一路”沿线主要国家有较高的CO2封存潜力, 在油藏和气藏中的理论封存量达到6200亿t。虽然目前沿线大部分国家CCUS技术都处于起步阶段,但在政府投资和政策的支持下,CCUS技术将为“一带一路”沿线主要国家碳减排目标的实现做出重要贡献。  相似文献   

7.
This paper employs a computable general equilibrium model (CGE) to analyse how a carbon tax and/or a national Emissions Trading System (ETS) would affect macroeconomic parameters in Turkey. The modelling work is based on three main policy options for the government by 2030, in the context of Turkey’s mitigation target under its Intended Nationally Determined Contribution (INDC), that is, reducing greenhouse gas (GHG) emissions by up to 21% from its Business as Usual (BAU) scenario in 2030: (i) improving the productivity of renewable energy by 1% per annum, a target already included in the INDC, (ii) introducing a new flat rate tax of 15% per ton of CO2 (of a reference carbon price in world markets) imposed on emissions originating from carbon-intensive sectors, and (iii) introducing a new ETS with caps on emission permits. Our base path scenario projects that GHG emissions in 2030 will be much lower than Turkey’s BAU trajectory of growth from 430 Mt CO2-eq in 2013 to 1.175 Mt CO2-eq by 2030, implying that the government’s commitment is largely redundant. On the other hand, if the official target is assumed to be only a simple reduction percentage in 2030 (by 21%), but based on our more realistic base path, the government’s current renewable energy plans will not be sufficient to reach it.
  • Turkey’s official INDC is based on over-optimistic assumptions of GDP growth and a highly carbon-intensive development pathway;

  • A carbon tax and/or an ETS would be required to reach the 21% reduction target over a realistic base path scenario for 2030;

  • The policy options considered in this paper have some effects on major sectors’ shares in total value-added. Yet the reduction in the shares of agriculture, industry, and transportation does not go beyond 1%, while the service sector seems to benefit from most of the policy options;

  • Overall employment would be affected positively by the renewable energy target, carbon tax, and ETS through the creation of new jobs;

  • Unemployment rates are lower, economic growth is stronger, and households become better off to a larger extent under an ETS than carbon taxation.

  相似文献   

8.
The responses of the climate system to increase of atmospheric carbon dioxide(CO2)arestudied by using a new version of the Bureau of Meteorological Research Centre(BMRC)globalcoupled general circulation model(CGCM).Two simulations are run:one with atmospheric CO2concentration held constant at 330 ppm,the other with a tripling of atmospheric CO2(990 ppm).Results from the 41-year control coupled integration are applied to analyze the mean state,seasonal cycle and interannual variability in the model.Comparisons between the greenhouseexperiment and the control experiment then provide estimations of the influence of increased CO2on climate changes and climate variability.Especially discussed is the question on whether theclimate changes concerned with CO2 inerease will impact interannual variability in tropical Pacific,such as ENSO.  相似文献   

9.
Limiting global warming to ‘well below’ 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase even further to 1.5°C is an integral part of the 2015 Paris Agreement. To achieve these aims, cumulative global carbon emissions after 2016 should not exceed 940 – 390?Gt of CO2 (for the 2°C target) and 167 – ?48?Gt of CO2 (for the 1.5°C target) by the end of the century. This paper analyses the EU’s cumulative carbon emissions in different models and scenarios (global models, EU-focused models and national carbon mitigation scenarios). Due to the higher reductions in energy use and carbon intensity of the end-use sectors in the national scenarios, we identify an additional mitigation potential of 26–37 Gt cumulative CO2 emissions up to 2050 compared to what is currently included in global or EU scenarios. These additional reductions could help to both reduce the need for carbon dioxide removals and bring cumulative emissions in global and EU scenarios in line with a fairness-based domestic EU budget for a 2°C target, while still remaining way above the budget for 1.5°C.

Key policy insights
  • Models used for policy advice such as global integrated assessment models or EU models fail to consider certain mitigation potential available at the level of sectors.

  • Global and EU models assume significant levels of CO2 emission reductions from carbon capture and storage to reach the 1.5°C target but also to reach the 2°C target.

  • Global and EU model scenarios are not compatible with a fair domestic EU share in the global carbon budget either for 2°C or for 1.5°C.

  • Integrating additional sectoral mitigation potential from detailed national models can help bring down cumulative emissions in global and EU models to a level comparable to a fairness-based domestic EU share compatible with the 2°C target, but not the 1.5°C aspiration.

  相似文献   

10.
In December 2015, China joined 190 plus nations at Paris in committing to the goal of limiting the rise in global average temperature to ‘well below’ 2°C. Carbon budget analysis indicates that goal will require not only that the European Union and US reduce their emissions by greater than 80% by 2050, but that China at least comes close to doing so as well, if any budget is to be left over for the rest of the world (RoW). Given that RoW emissions are, and will come from, low-income and emerging nations, China’s emission reduction potential is of no small consequence. In this paper, we use the Kaya identity to back out changes in the drivers of CO2 emissions, including gross domestic product (GDP), energy intensity (E/GDP) and the carbon content of energy (C/E), the latter two calculated to be consistent with China’s long-term GDP growth rate forecasts and specified 2050 CO2 emission reduction targets. Our results suggest that even achieving China’s highly optimistic renewable energy targets will be very far from sufficient to reduce China’s CO2 emissions from 9.1?Gt it emitted in 2015 to much below 3?Gt by 2050. Even reducing its emissions to 5?Gt will be challenging, yet this falls far short of what is needed if the world is to meet its ‘well below’ 2°C commitment.

Key policy insights
  • Under the Paris Agreement there is great pressure on China to very substantially reduce its emissions by 2050.

  • While China has attached great importance to renewables and nuclear energy development, even achieving the most optimistic targets would not be sufficient to reduce China’s emissions from 9.1?Gt in 2015 to much below 3?Gt by 2050.

  • China’s emission reduction potential falls far short of what is needed if the world is to meet its Paris ‘well below’ 2°C commitment, even if the EU and US reduce their emissions to zero by 2050.

  • Emission cuts consistent with the Paris Agreement will require that China and the world give much greater weight to advancing research and development of scalable low-, zero- and negative-carbon sources and technologies.

  相似文献   

11.
Previous attempts to estimate the supply of greenhouse gas emission reductions from reduced emissions from deforestation (RED) have generally failed to incorporate policy developments, country-specific abilities and political willingness to supply offsets for developed countries’ emissions. To address this, we estimate policy-appropriate projections of creditable emission reductions from RED. Two global forest carbon models are used to examine major assumptions affecting the generation of credits. The results show that the estimated feasible supply of RED credits is significantly below the biophysical mitigation potential from deforestation. A literature review identified an annual RED emission reduction potential between 1.6 and 4.3 Gt CO2e. Feasible RED supply estimates applying the OSIRIS model were 1.74 Gt CO2e annually between 2011 and 2020, with a cumulative supply of 17.4 Gt CO2e under an ‘own-efforts’ scenario. Estimates from the Forest Carbon Index were very low at $5/t CO2e with 8 million tonne CO2e annually, rising to 1.8 Gt CO2e at $20/t CO2e. Cumulative abatement between 2011 and 2020 was 9 billion Gt CO2e ($20/t CO2e). These volumes were lower, sometimes dramatically, at prices of $5/t CO2e suggesting a non-linear supply of credits in relation to price at a low payment level. For policy makers, the results suggest that inclusion of RED in a climate framework increases abatement potential, although significant constraints are imposed by political and technical issues.  相似文献   

12.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   

13.
大气污染严重威胁了我国陆地生态系统的固碳能力,但随着减污降碳协同治理的快速推进,减缓大气污染将有利于提升陆地碳汇,并切实推动碳达峰碳中和目标的实现。为了更好地理解大气污染与生态系统固碳的关系,本文以主要空气污染物臭氧(O3)为例,基于田间控制实验的整合分析、剂量响应关系及机理模型三种评估方法综述了近地层O3污染对植被碳固定影响的最新进展。尽管不同作物种类以及品种、不同功能型木本植物对O3的响应有着显著的差异,且各种方法的评估结果也不尽相同,但目前O3浓度造成我国粮食作物减产、森林生产力降低已是不争的事实。持续升高的O3浓度将严重威胁我国陆地生态系统的固碳能力。利用我国作物和树木的O3剂量响应方程进行评估的结果表明,在CO2减排和O3污染协同治理下,预计2060年我国树木生物量和作物产量将比当前显著提高,增加陆地生态系统碳汇,助力碳中和目标。最后,对如何提高O3污染环境下植物固碳能力也进行了展望。  相似文献   

14.
《Climate Policy》2013,13(1):789-812
To what degree are recently built and planned power plants in the EU ‘capture-ready’ for carbon capture and storage (CCS)? Survey results show that most recently built fossil fuel power plants have not been designed as capture-ready. For 20 planned coal-fired plants, 13 were said to be capture-ready (65%). For 31 planned gas-fired power plants, only 2 were indicated to be capture-ready (6%). Recently built or planned power plants are expected to cover a large share of fossil fuel capacity by 2030 and thereby have a large impact on the possibility to implement CCS after 2020. It is estimated that around 15–30% of fossil fuel capacity by 2030 can be capture-ready or have CO2 capture implemented from the start. If CCS is implemented at these plants, 14–28% of baseline CO2 emissions from fossil fuel power generation in 2030 could be mitigated, equivalent to 220–410 MtCO2. A key reason indicated by utilities for building a capture-ready plant is (expected) national or EU policies. In addition, financial incentives and expected high CO2 prices are important. The implementation of a long-term regulatory framework for CCS with clear definitions of ‘capture- readiness’ and policy requirements will be important challenges.  相似文献   

15.
Jian Ni 《Climatic change》2002,55(1-2):61-75
The BIOME3 model was used to simulate the distribution patterns and carbon storage of the horizontal, zonal boreal forests in northeast and northwest China using a mapping system for vegetation patterns combined with carbon density estimates from vegetation and soils. The BIOME3 prediction is in reasonable good agreement with the potential distribution of Chinese boreal forests. The effects of changing atmospheric CO2 concentration had a nonlinear effect on boreal forest distribution, with 3.5–10.8% reduced areas for both increasing and decreasing CO2. In contrast, the increased climate together with and without changing CO2 concentration showed dramatic changes in geographic patterns, with 70% reduction in area and disappearance of almost boreal forests in northeast China. The baseline carbon storage in boreal forests of China is 4.60 PgC (median estimate) based on the vegetation area of actual boreal forest distribution. If taking the large area of agricultural crops into account, the median value of potential carbon storage is 6.92 PgC. The increasing (340–500 ppmv) and decreasing CO2 concentration (340–200 ppmv) led to decrease of carbon storage, 0.33 PgC and 1.01 PgC respectively compared to BIOME3 potential prediction under present climate and CO2 conditions. Both climate change alone and climate change with CO2 enrichment (340–500 ppmv) reduced largely the carbon stored in vegetation and soils by ca. 6.5 PgC. The effect of climate change is more significant than the direct physiological effect of CO2 concentration on the boreal forests of China, showing a large reduction in both distribution area and carbon storage.  相似文献   

16.
The need for atmospheric carbon dioxide(CO_2) reduction in the context of global warming is widely acknowledged by the global scientific community.Fossil fuel CO_2(CO_(2ff)) emissions occur mainly in cities,and can be monitored directly with radiocarbon(~(14) C).In this research,annual plants [Setaria viridis(L.) Beauv.] were collected from 26 sites in 2013 and2014 in the central urban district of Xi'an City.The △~(14)C content of the samples were analyzed using a 3 MV Accelerator Mass Spectrometer,and CO_(2ff) concentrations were calculated based on mass balance equations.The results showed that the CO_(2ff) mixing ratio ranged from 15.9 to 25.0 ppm(part per million,equivalent to μmol mol~(-1)),with an average of 20.5 ppm in 2013.The range of measured values became larger in 2014,from 13.9 ppm to 33.1 ppm,with an average of 23.5 ppm.The differences among the average CO_(2ff) concentrations between the central area and outer urban areas were not statistically significant.Although the year-to-year variation of the CO_(2ff) concentration was significant(P 0.01),there was a distinctly low CO_(2 ff) value observed in the northeast corner of the city.CO_(2 ff) emiissions from vehicle exhaust and residential sources appeared to be more significant than two thermal power plants,according to our observed CO_(2 ff) spatial distribution.The variation of pollution source transport recorded in our observations was likely controlled by southwesterly winds.These results could assist in the optimal placement of regional CO_2 monitoring stations,and benefit the local government in the implementation of efficient carbon emission reduction measures.  相似文献   

17.
A two-dimensional model of global atmospheric transport is used to relate estimated air-to-surface exchanges of carbon dioxide (CO2) to spatial and temporal variations of atmospheric CO2 concentrations and isotopic composition. The atmospheric model coupled with models of the biosphere and mixed layer of the ocean describes the gross features of the global carbon cycle. In particular this paper considers the change in isotopic composition due to interreservoir exchanges and thus the potential application and measurement requirements of new isotopic observational programs.A comparison is made between the model-generated CO2 concentration variation and those observed on secular, interannual and seasonal time scales and spatially through the depth of the troposphere and meridionally from pole-to-pole.The relationship between isotopic and concentration variation on a seasonal time-scale is discussed and it is shown how this can be used to quantitatively estimate relative contributions of biospheric and oceanic CO2 exchange. Further, it is shown that the interhemispheric gradient of concentration and isotopic ratio results primarily from the redistribution of fossil fuel CO2. Both isotopic and concentration data indicate that tropical deforestation contributes less than 2 Gt yr-1 of carbon to the atmosphere.The study suggests that changes in the rate of change of the ratio of 13C to 12C in the atmosphere of less than 0.03 yr-1 might be expected if net exchanges with the biosphere are the cause of interannual variations of CO2 concentrations.  相似文献   

18.
This paper evaluated the impacts of climate change mitigation technology options on CO2 emission reductions and the effects of model representations regarding renewable intermittency on the assessment of reduction by using a world energy systems model. First, different diffusion scenarios for carbon dioxide capture and storage (CCS), nuclear power, and wind power and solar PV are selected from EMF27 scenarios to analyze their impacts on CO2 emission reductions. These technologies are important for reducing CO2 intensity of electricity, and the impacts of their diffusion levels on mitigation costs are significant, according to the analyses. Availability of CCS in particular, among the three kinds of technologies, has a large impact on the marginal CO2 abatement cost. In order to analyze effects of model representations regarding renewables intermittency, four different representations are assumed within the model. A simplistic model representation that does not take into consideration the intermittency of wind power and solar PV evaluates larger contributions of the energy sources than those evaluated by a model representation that takes intermittency into consideration. Appropriate consideration of renewables intermittency within global energy systems models will be important for realistic evaluations of climate change mitigation scenarios.  相似文献   

19.
Sea level rise (SLR) is among the climate-change-related problems of greatest concern, threatening the lives and property of coastal residents and generating far-reaching economic and ecological impacts. We project that SLR will lead to an increase in the rate of new housing construction to replace destroyed structures, impact global wood products supply and demand conditions, and cause changes in global forest sector carbon mitigation potential. Findings indicate that 71 million new units will be built by 2050 to accommodate the SLR-affected global population. More than two-thirds of these new units are projected to be in Asia. The estimated extra wood products needed to build these new residential units is 1,659 million m3, assuming that all these structures would be built mainly with wood, representing a 4 % increase in total wood consumption, compared to projected reference level global wood products consumption. Increased timber removals to meet this higher construction wood demand (alternative scenario) is shown to deplete global forest carbon by 2 % by 2050 compared to the reference scenario. However, all such projected declines in forest biomass carbon could be more than offset by increased carbon sequestration in harvested wood products, avoided emissions due to substitution of wood for non-wood materials in construction, and biomass regrowth on forestland by 2050, with an estimated net emissions reduction benefit of 0.47 tCO2e/tCO2e of extra wood used in SLR-related new houses over 30 years. The global net emissions reduction benefit increased to 2.13 tCO2e/tCO2e of extra wood when price-induced changes in forest land area were included.  相似文献   

20.
Economics of geological CO2 storage and leakage   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号