首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
推动电力行业低碳发展是中国有效控制CO2排放和推动尽早达峰的重要抓手。在分别利用学习曲线工具和自下而上技术核算方式分析风电、光伏两类主要的可再生电力和其他各类电源发展趋势的基础上,综合评估了既有政策和强化政策条件下2035年前中国电力行业能源活动碳排放变化趋势。研究发现,既有政策情景下电力行业碳排放在2030年左右达到峰值,届时非化石能源在发电量中比重为44%,而通过强化推动能源绿色低碳发展的相关政策,2025年前即可达到电力行业碳排放峰值,2030年非化石电力在发电量中比重可以提升至51%,其中可再生电力加速发展将分别贡献2025、2030和2035年当年减排量(相对于既有政策情景)的45%、54%和62%。尽管从保障电力稳定安全供应角度,煤电装机仍有一定增长空间,但考虑到电力行业绿色低碳和可持续发展的长期需求,仍应加强对煤电装机的有效控制,“十四五”期间努力将煤电装机控制在11亿kW左右的水平。  相似文献   

2.
在中国经济步入新常态之际,为了研究城镇化背景下的长期碳排放趋势,构建了人口变动与能源系统互动的综合分析框架与社会经济-能源系统模型。结果显示,从2014年至2050年,预计有3亿人口从农村流向城市,并呈现从中小型城市逐步向大型和特大型城市汇集的趋势。人口流动趋势与人民生活质量改善结合,推动中国基础设施建设、工业产品生产和能源服务需求增长。基准情景下,2050年中国一次能源消费总量达到84亿tce,能源相关CO2排放达到176亿t,比2013年增长83%;而在低碳转型情景下,通过技术创新,2050年中国一次能源消费需求可以控制在61亿tce左右,CO2排放在2020—2025年间达峰,2050年比基准情景降低78%。低碳转型过程中,非化石能源电力和能效技术的减排潜力最大,工业和电力部门率先在2020年达峰,建筑和交通 (①按照国际通行的能源系统部门划分标准和能耗概念,工业、建筑、交通均属于终端能源消费部门,其中建筑部门能耗指建筑运行能耗,而非建筑建造过程中的能耗;交通部门能耗指所有交通活动能耗,既包括交通运输业营运类运输工具的交通能耗,也包括私人、公务非营运类运输工具的交通能耗 [1]。)将在2030年左右达峰。实现低碳转型所需新增固定投资占GDP的1.5%,不会给国民经济带来重大负担。中国实施新型城镇化战略具有技术和经济可行性。  相似文献   

3.
China has pledged to meet a series of political targets on energy and environmental performance, including a target of a 15% non-fossil fuel share in total energy use by 2020. Achieving this target requires expansion of non-fossil energy and restraining energy use, which has implications for achieving the 40–45% carbon intensity reduction target. The present study outlines quantitative formulas to measure the nexus between the dynamics of GDP, energy, and carbon intensity. Considering a ‘likely’ scenario of the non-fossil fuel expansion envisioned by the Chinese government and a GDP growth rate of 8% per annum, the key to accomplishing both targets is to restrain energy consumption to attain an energy elasticity to GDP of approximately 0.53. Both targets can be achieved simultaneously with the existing non-fossil expansion plan and are within the ‘normal’ range of GDP growth seen in China over the long term. This is, however, less than the value realized over the last 10 years. To comply with the non-fossil fuel target, the potentially slower expansion of nuclear power capacity must be compensated for by other non-fossil options. Otherwise, there must be a greater attempt to decouple energy demand and economic growth in order to realize a smaller energy elasticity to GDP.

Policy relevance

China has pledged to achieve a 15% non-fossil fuel share and reduce its carbon intensity by 40–45% by 2020. The key to accomplishing both targets is to restrain energy consumption and promote the development of non-fossil fuels. The achievement of these two targets by 2020 is analysed between share of non-fossil fuel, CO2 intensity of energy and GDP, and energy elasticity in relation to GDP. This analysis can inform the governmental energy and climate policy on the scale and pace of non-fossil fuel development, and the prerequisite regarding the energy elasticity to GDP to achieve the targets. The impacts of slower expansion of nuclear power capacity on the target achievement and implied elasticity of energy to GDP are also provided, which is close to the policy choice and actions of government on energy saving and emissions reduction.  相似文献   

4.
交通部门在中长期具有很高的碳排放增长潜力,对我国低碳转型有重要影响。构建自下而上的能源系统模型PECE-LIU2017及其交通模块,设置未来交通发展的基准、NDC和低碳3个情景,深入分析交通需求背后的驱动因子及发展趋势,制定交通部门中长期低碳发展路径。结果显示,随着经济发展和人均收入水平提高,未来我国交通需求将持续增长。NDC情景下,交通部门有望在2038年左右达峰。在低碳情景下,我国交通部门2050年CO2排放将从基准情景30亿t降低为6亿t,并在2030年左右达峰,为我国中长期低碳发展目标贡献17.5%的累计减排量。2016—2050年低碳交通固定投资需求为15.7万亿元人民币,占我国中长期低碳投资总需求的53%。通过提高燃油经济性、推广新能源汽车以及发挥城市公共出行最大潜力,交通部门能够以技术可行的方式实现低碳转型,并对我国长期低碳发展战略做出重要贡献。  相似文献   

5.
通过分析《气候与能源2030政策框架》(以下简称《框架》)方案要点,认为欧盟2030年的减排目标相对2020年承诺目标更为积极,可再生能源目标略高于之前官方预期。由于东欧国家的参与,欧盟一方面获得了这些国家盈余的排放配额,帮助欧盟作为一个整体实现减排目标;另一方面,成员国经济发展水平差异增大,导致欧盟施行相对积极的环境政策阻力加大,未来大幅调整减排目标的可能性不大。《框架》目标将可能对2020年后国际碳市场需求预估产生影响,未来国际碳市场的健康运行,将不仅需要欧盟外的发达国家提出具有雄心的减排目标,也需要欧盟提高减排目标,增加其对于国际减排配额的需求;此外,欧盟辅助实现40%减排目标的相关生产标准和措施,可能对未来全球自由贸易产生影响,其他国家尤其是对外贸易依存度较高的发展中国家需要密切关注相关动向。《框架》方案所提出的以应对气候变化引领和促进经济发展、采用组合目标且针对不同目标采取不同实现形式、展现制定目标的透明度、充分考虑成员国差异等提法和操作方式值得中国借鉴。  相似文献   

6.
In December 2015, China joined 190 plus nations at Paris in committing to the goal of limiting the rise in global average temperature to ‘well below’ 2°C. Carbon budget analysis indicates that goal will require not only that the European Union and US reduce their emissions by greater than 80% by 2050, but that China at least comes close to doing so as well, if any budget is to be left over for the rest of the world (RoW). Given that RoW emissions are, and will come from, low-income and emerging nations, China’s emission reduction potential is of no small consequence. In this paper, we use the Kaya identity to back out changes in the drivers of CO2 emissions, including gross domestic product (GDP), energy intensity (E/GDP) and the carbon content of energy (C/E), the latter two calculated to be consistent with China’s long-term GDP growth rate forecasts and specified 2050 CO2 emission reduction targets. Our results suggest that even achieving China’s highly optimistic renewable energy targets will be very far from sufficient to reduce China’s CO2 emissions from 9.1?Gt it emitted in 2015 to much below 3?Gt by 2050. Even reducing its emissions to 5?Gt will be challenging, yet this falls far short of what is needed if the world is to meet its ‘well below’ 2°C commitment.

Key policy insights
  • Under the Paris Agreement there is great pressure on China to very substantially reduce its emissions by 2050.

  • While China has attached great importance to renewables and nuclear energy development, even achieving the most optimistic targets would not be sufficient to reduce China’s emissions from 9.1?Gt in 2015 to much below 3?Gt by 2050.

  • China’s emission reduction potential falls far short of what is needed if the world is to meet its Paris ‘well below’ 2°C commitment, even if the EU and US reduce their emissions to zero by 2050.

  • Emission cuts consistent with the Paris Agreement will require that China and the world give much greater weight to advancing research and development of scalable low-, zero- and negative-carbon sources and technologies.

  相似文献   

7.
1.5℃温升目标下中国碳排放路径研究   总被引:1,自引:0,他引:1  
《巴黎协定》提出1.5℃目标以及中国2060年前达到碳中和的目标背景下,为研究实现1.5℃目标的技术路径,构建了综合性的能源-经济-环境系统模型,研究中国在2℃情景基础上实现1.5℃目标的额外减排要求、部门贡献和关键减排措施.结果显示,1.5℃情景要求到2050年CO2排放量减少到6亿t.一次能源消费总量2045年达峰...  相似文献   

8.
There is growing scientific and public concern that increasing concentrations of greenhouse gases in the atmosphere will produce global warming and other climatic changes. Although economic activity is the main source of greenhouse gas emissions, information and incentive problems make it difficult to translate concern about global warming into economic behaviour and policy conducive to reducing emissions. The paper considers a set of near term (carbon tax), intermediate term (afforestation, energy efficiency) and long term (new non-fossil fuel technologies) strategies for reducing CO2 in the atmosphere. Each strategy has useful attributes, but shortcomings or limitations too. While the near term and intermediate term strategies can slow and perhaps reverse the growth of CO2 emissions, only a successful long term strategy of fostering the development of some promising non-fossil fuel technologies, such as solar and solar-hydrogen, can eventually halt the build-up of CO2 in the atmosphere. Moreover, public investment in the development of new non-fossil fuel technologies would largely obviate the information and incentive problems that currently stand in the way of an economically viable greenhouse policy.  相似文献   

9.
采用多区域投入产出模型(MRIO),利用欧盟资助开发的世界投入产出表和环境账户数据,测算了1995—2009年中国与美国的增加值贸易规模及净值,在此基础上利用环境账户中的能源消耗和碳排放数据测算出中美外贸隐含能源和隐含碳排放总体水平及其行业结构。研究表明:1995—2009年,中国对美国的增加值出口保持持续增长的态势,尤其是在中国加入世界贸易组织(WTO)后,但随后受2008年全球经济危机的影响,中国增加值出口规模有所减小;相比于美国,中国单位增加值能耗和碳排放水平较高,从而导致较大规模的隐含能源和隐含碳出口,长期处于隐含能源和隐含碳净输出国地位,且净输出规模呈现出上升的趋势;从行业结构来看,电力、燃气及水的供应业等能源行业是中国出口隐含能源和隐含碳排放的主要行业来源。  相似文献   

10.
A change in economic structure influences the total energy consumption as well as CO2 emissions of a country, given the inherent difference in levels of energy intensity and energy fuel mix of different economic sectors. Its significance has been recognized in recent literature on China’s emission mitigation which could arguably raise China’s mitigation potential and thus the possibility of keeping the 2-degree trajectory on track. This article utilizes the past trend of economic structural change of five East Asian developed economies to project the energy consumption and CO2 emissions of China in the coming decades. A special delineation of the economic sector is made, putting private consumption together with the three typical economic production sectors, to resolve the mismatch between the statistical data of energy consumption and economic production, in that residential energy consumption is typically merged into the tertiary sector, although it does not directly correspond to gross domestic product (GDP) output. Results suggest that the level of CO2 emissions would be lower if China followed a development pathway emphasizing the development of the tertiary sector and continuously shrinking her secondary sector, making it possible for China to contribute more to global carbon mitigation. The impact from the rise of private consumption would be relatively insignificant compared to deindustrialization. In addition to continuous improvement in technology, economic structural change, which reduces carbon emission intensity, would be essential for China to be able to achieve the carbon emission level pledged in the Paris Agreement.

Key policy insights

  • For China, significant economic structural reform, particularly deindustrialization, is necessary to achieve the goal of ‘peak emission by 2030’.

  • Any additional contribution from China to the global effort to maintain a 2-degree trajectory would be limited – from a ‘fair-contribution’ perspective based on share of population or GDP – because the implied mitigation targets would be almost impossible to achieve.

  • If developing countries follow the pathway of developed economies, particularly in developing energy-intensive industries, energy consumption and CO2 emissions would significantly increase, reducing the possibility of keeping global temperature rise within the 2-degree Celsius benchmark.

  相似文献   

11.
This paper employs a computable general equilibrium model (CGE) to analyse how a carbon tax and/or a national Emissions Trading System (ETS) would affect macroeconomic parameters in Turkey. The modelling work is based on three main policy options for the government by 2030, in the context of Turkey’s mitigation target under its Intended Nationally Determined Contribution (INDC), that is, reducing greenhouse gas (GHG) emissions by up to 21% from its Business as Usual (BAU) scenario in 2030: (i) improving the productivity of renewable energy by 1% per annum, a target already included in the INDC, (ii) introducing a new flat rate tax of 15% per ton of CO2 (of a reference carbon price in world markets) imposed on emissions originating from carbon-intensive sectors, and (iii) introducing a new ETS with caps on emission permits. Our base path scenario projects that GHG emissions in 2030 will be much lower than Turkey’s BAU trajectory of growth from 430 Mt CO2-eq in 2013 to 1.175 Mt CO2-eq by 2030, implying that the government’s commitment is largely redundant. On the other hand, if the official target is assumed to be only a simple reduction percentage in 2030 (by 21%), but based on our more realistic base path, the government’s current renewable energy plans will not be sufficient to reach it.
  • Turkey’s official INDC is based on over-optimistic assumptions of GDP growth and a highly carbon-intensive development pathway;

  • A carbon tax and/or an ETS would be required to reach the 21% reduction target over a realistic base path scenario for 2030;

  • The policy options considered in this paper have some effects on major sectors’ shares in total value-added. Yet the reduction in the shares of agriculture, industry, and transportation does not go beyond 1%, while the service sector seems to benefit from most of the policy options;

  • Overall employment would be affected positively by the renewable energy target, carbon tax, and ETS through the creation of new jobs;

  • Unemployment rates are lower, economic growth is stronger, and households become better off to a larger extent under an ETS than carbon taxation.

  相似文献   

12.
随着气候变化影响加剧,全球气候治理进程加速,实现碳达峰已经成为全球气候行动的核心,各国也相继制定碳中和目标并开展行动。中国在第75届联合国大会一般性辩论上提出了碳达峰碳中和目标,部分已实现碳达峰的发达经济体也提出了各自的碳中和承诺。文中从“整体-阶段”及“焦点-公平”视角分析了欧盟和美国等主要发达经济体碳达峰的历程和特点,以及其碳中和目标和规划。研究发现,发达经济体在碳达峰过程中普遍经历了较长的爬坡期(58~136年)和平台期(4~20年),在碳达峰时,发达经济体的能源结构以油气为主,油气占一次能源消费比重为57%~77%,其人均排放量、历史累计排放以及人均GDP也都处于较高水平,在碳达峰前后总体处于经济与碳排放脱钩状态。各发达经济体的碳中和路径均以能源转型为重点,采用了多元化的政策工具,并且注重低碳和负碳技术的革新。根据发达经济体的政策展望,在实现碳中和时,均难以将绝对排放量降为零,都需要通过碳移除手段进行抵消。通过对比分析,发现中国的碳达峰和碳中和目标是具有雄心的气候承诺,相较其他发达经济体需要付出更大努力。建议运用全面综合的政策工具支撑碳中和目标的有效落实,加快中国的气候立法,在兼顾公正转型的同时推动能源结构调整,注重可再生能源和能效方面的新技术开发应用。  相似文献   

13.
China’s recently announced directive on tackling climate change, namely, to reach carbon peak by 2030 and to achieve carbon neutrality by 2060, has led to an unprecedented nationwide response among the academia and industry. Under such a directive, a rapid increase in the grid penetration rate of solar in the near future can be fully anticipated. Although solar radiation is an atmospheric process, its utilization, as to produce electricity, has hitherto been handled by engineers. In that, it is thought important to bridge the two fields, atmospheric sciences and solar engineering, for the common good of carbon neutrality. In this überreview, all major aspects pertaining to solar resource assessment and forecasting are discussed in brief. Given the size of the topic at hand, instead of presenting technical details, which would be overly lengthy and repetitive, the overarching goal of this review is to comprehensively compile a catalog of some recent, and some not so recent, review papers, so that the interested readers can explore the details on their own.  相似文献   

14.
《Climate Policy》2013,13(1):789-812
To what degree are recently built and planned power plants in the EU ‘capture-ready’ for carbon capture and storage (CCS)? Survey results show that most recently built fossil fuel power plants have not been designed as capture-ready. For 20 planned coal-fired plants, 13 were said to be capture-ready (65%). For 31 planned gas-fired power plants, only 2 were indicated to be capture-ready (6%). Recently built or planned power plants are expected to cover a large share of fossil fuel capacity by 2030 and thereby have a large impact on the possibility to implement CCS after 2020. It is estimated that around 15–30% of fossil fuel capacity by 2030 can be capture-ready or have CO2 capture implemented from the start. If CCS is implemented at these plants, 14–28% of baseline CO2 emissions from fossil fuel power generation in 2030 could be mitigated, equivalent to 220–410 MtCO2. A key reason indicated by utilities for building a capture-ready plant is (expected) national or EU policies. In addition, financial incentives and expected high CO2 prices are important. The implementation of a long-term regulatory framework for CCS with clear definitions of ‘capture- readiness’ and policy requirements will be important challenges.  相似文献   

15.
以人均国际航空CO2历史累计排放为基础,借用收入分配公平的研究思路,构造了碳洛伦兹曲线和碳基尼系数,以此来测度各国历史上国际航空碳排放权的不公平使用。对碳基尼系数计算分析表明,历史上国际航空碳排放存在巨大的不公平性,但随累计起始年的延后,不公平性被部分掩盖。国际航空碳排放权公平分配是构建国际航空全球减排机制的关键问题,本文提出的以责任-能力指数为基础构建的国际航空碳排放权分配方案,体现了公平原则。以实现“2020年碳中性”目标为例,运用本文构建的分配方案,计算出了各国2021年分配的碳减排量。  相似文献   

16.
2012年,中国房间空气调节器(空调器)保有量约为3.57亿台,依据抽样调查数据计算得到保有量装机容量,采用各省市夏季平均温度估算超过26℃的时间作为运行时间计算得出年电力消耗约3.28×1011 kW?h,折合碳排放约为318 Mt CO2当量。由于空调器国内需求量将进一步增长,预计到2030年保有量将达到当前的4~5倍。在电力结构不变情景下,空调器总体能效提高1倍,2030年空调器电力消耗产生的温室气体排放约为603 Mt CO2当量。假设空调器总体能效提高1倍、高能效产品消费比例进一步提高并伴随中国能源结构调整,如水电、核电、太阳能等低碳能源比例不断提高,在满足中国空调器需求的前提下,2030年中国空调器电力消耗产生的温室气体排放可以争取控制在当前的水平。  相似文献   

17.
Ahead of the Conference of Parties (COP) 24 where countries will first take stock of climate action post Paris, this paper assesses India’s progress on its nationally determined contribution (NDC) targets and future energy plans. We find that, although India is well on track to meet its NDC pledges, these targets were extremely modest given previous context. Furthermore, there is considerable uncertainty around India’s energy policy post 2030 and if current plans for energy futures materialise, the Paris Agreement’s 2 degrees goal will be almost certainly unachievable. India’s role in international climate politics has shifted from obstructionism to leadership particularly following the announcement of withdrawal by the United States from the Paris Agreement, but analysis reveals that India’s ‘hard’ actions on the domestic front are inconsistent with its ‘soft’ actions in the international climate policy arena. Going forward, India is likely to face increasing calls for stronger mitigation action and we suggest that this gap can be bridged by strengthening the links between India’s foreign policy ambitions, international climate commitments, and domestic energy realities.

Key policy insights

  • India’s NDC pledges on carbon intensity and share of non-fossil fuel capacity are relatively modest given domestic context and offer plenty of room to increase ambition of action.

  • India’s ‘soft’ leadership in global climate policy can be matched by ‘hard’ commitments by bringing NDC pledges in line with domestic policy realities.

  • There is significant uncertainty around future plans for coal power in India which have the potential to exceed the remaining global carbon budget for 2 degrees.

  相似文献   

18.
Achieving the international 2 °C limit climate policy requires stringent reductions in GHG emissions by mid-century, with some countries simultaneously facing development-related challenges. South Africa is a middle-income developing country with high rates of unemployment and high levels of poverty, as well as an emissions-intensive economy. South Africa takes into account an assessment of what a fair contribution to reducing global emissions might be, and is committed to a ‘peak, plateau and decline' emissions trajectory with absolute emissions specified for 2025 and 2030, while noting the need to address development imperatives. This work utilizes an economy-wide computable general equilibrium model (e-SAGE) linked to an energy-system optimization model (TIMES) to explore improving development metrics within a 14 GtCO2e cumulative energy sector carbon constraint through to 2050 for South Africa. The electricity sector decarbonizes by retiring coal-fired power plants or replacing with concentrated solar power, solar photovoltaics and wind generation. Industry and tertiary-sector growth remains strong throughout the time period, with reduced energy intensity via fuel-switching and efficiency improvements. From 2010 to 2050, the model results in the unemployment rate decreasing from 25% to 12%, and the percentage of people living below the poverty line decreasing from 49% to 18%. Total energy GHG emissions were reduced by 39% and per capita emissions decreased by 62%.

Policy relevance

Lower poverty and inequality are goals that cannot be subordinated to lower GHG emissions. Policy documents in South Africa outline objectives such as reducing poverty and inequality with a key focus on education and employment. In its climate policy and Intended Nationally Determined Contribution (INDC), South Africa is committed to a peak, plateau and decline GHG emissions trajectory. As in many developing countries, these policy goals require major transformations in the energy system while simultaneously increasing affordable access to safe and convenient energy services for those living in energy poverty. The modelled scenario in this work focuses on employment and poverty reduction under a carbon constraint, a novel combination with results that can provide information for a holistic climate and development policy framework. This study has focused on the long term, which is important in generating clear policy signals for the necessary large-scale investments.  相似文献   

19.
Abstract

This article analyses the national circumstances and major factors underpinning China's energy demand and supply, energy-related emissions, and consequently China's sustainable development. These factors include the huge, still growing, and aging population, rapid economic growth, ongoing industrialization and urbanization, environmental and health concerns at local, regional and global level. Against such background analysis, the article explores the potential and constraints of non-fossil fuel, fuel-switching to natural gas, economy restructuring and clean coal technology in mitigating emissions of greenhouse gases (GHG) and ensuring energy supply in China. The authors reiterate the importance of improving energy efficiency in China and discuss how to integrate renewable energy into rural development. The article concludes with an in-depth discussion about redefining development goals, the equity issue in climate change process, and the linkage with sustainable development.  相似文献   

20.
The Chinese government actively follows the low-carbon development pattern and has set the definite targets of reducing carbon emissions by 2030. The industrial sector plays a significant role in China's economic growth and CO2 emissions. This is the first study to present a specific investigation on the retrospective decomposition (1993–2014) and prospective trajectories (2015–2035) of China's industrial CO2 emission intensity (ICEI) and industrial CO2 emissions (ICE), aiming at China Industrial Green Development Plan 2016–2020 targets and China's 2030 CO2 emission-reduction targets. We introduce process carbon intensity, investment and R&D factors into the decomposition model and make a combination of dynamic Monte Carlo simulation and scenario analysis to identify whether and how the targets would be realized from a sector-specific perspective. The results indicate that investment intensity is the primary driver for the increase in ICEI, while R&D intensity and energy intensity are the leading contributors to the reduction in ICEI. Under existing policies, it is very possible for the industrial sector to achieve the 2020 and 2030 intensity-reduction targets. However, the realization of 2030 emission-peak target has some uncertainties and needs extra efforts in efficiency improvement and structural adjustment. All the five scenarios would achieve the 2020 and 2030 intensity-reduction targets, except Scenario N4 for China Industrial Green Development Plan 2016–2020 target. Nonetheless, only three scenarios would realize the 2030 emission-peak target. With strong efficiency improvement and structural adjustment, ICE would hit the peak in 2025. In contrast, with high/low efficiency improvement and weak structural adjustment, ICE would fail to reach the peak before 2035. Both ICEI and ICE have substantial mitigation potentials with the enhancement of efficiency improvement and structural adjustment. Finally, we suggest that the Chinese government should raise the baseline requirements of efficiency improvement and structural adjustment for the industrial sector to achieve China’s 2030 targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号