首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.  相似文献   

2.
A numerical study of the summertime flow around the Luzon Strait   总被引:3,自引:0,他引:3  
Luzon Strait, a wide channel between Taiwan and Luzon islands, connects the northern South China Sea and the Philippine Sea. The Kuroshio, South China Sea gyre, monsoon and local topography influence circulation in the Luzon Strait area. In addition, the fact that the South China Sea is a fairly isolated basin accounts for why its water property differs markedly from the Kuroshio water east of Luzon. This work applies a numerical model to examine the influence of the difference in the vertical stratification between the South China Sea and Kuroshio waters on the loop current of Kuroshio in the Luzon Strait during summer. According to model results, the loop current’s strength in the strait reduces as the strongly stratified South China Sea water is driven northward by the southwest winds. Numerical results also indicate that Kuroshio is separated by a nearly meridional ridge east of Luzon Strait. The two velocity core structures of Kuroshio can also be observed in eastern Taiwan. Moreover, the water flowing from the South China Sea contributes primarily to the near shore core of Kuroshio.  相似文献   

3.
Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS), the high-resolution SCS deep circulation is numerically investigated. The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July), a northeastsouthwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn. The sensitivity ...  相似文献   

4.
On the basis of the latest version of a U.S. Navy generalized digital environment model(GDEM-V3.0) and World Ocean Atlas(WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that:(1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea(SCS);(2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness;(3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability;(4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait.Moreover, the deepwater overflow reaches its seasonal maximum in December(based on GDEM-V3.0) or in fall(October–December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest(3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.  相似文献   

5.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

6.
Combined conductivity-temperature-depth(CTD) casts and Argo profiles, 3 086 historical hydrocasts were used to quantify the water column characteristics in the northern South China Sea(SCS) and its adjacent waters. Based on a two-dimensional "gravest empirical mode"(GEM), a gravitational potential(, a vertically integrated variable) was used as proxy for the vertical temperature profiles TG(p,). integrated from 8 MPa to the surface shows a close relationship with the temperature, except in the deep layer greater than 15 MPa, which was caused by the bimodal deep water in the region. The GEM temperature profiles successfully revealed the bimodality of the Luzon Strait deep water, that disparate hydrophic vertical profiles can produce distinct specific volume anomaly() in the SCS and the western Philippine Sea(WPS), but failed in the Luzon Strait, where different temperature profiles may produce a same. A significant temperature divergence between the SCS water and the WPS water confirmed that the bimodal structure is strong. The deepwater bifurcation starts at about 15 MPa, and gets stronger with increasing depth. As the only deep channel connecting the bimodal-structure waters, water column characteristics in the Luzon Strait is in between, but much closer to the SCS water because of its better connectivity with the SCS. A bimodal temperature structure below 15 MPa reveals that there was a persistent baroclinic pressure gradient driving flow through the Luzon Strait. A volume flux predicted through the Bashi Channel with the hydraulic theory yields a value of 5.62×106 m3/s using all available profiles upstream and downstream of the overflow region, and 4.03×106and 2.70×106 m3/s by exclusively using the profiles collected during spring and summer, respectively. No volume flux was calculated during autumn and winter because profiles are only available for the upstream of the Bashi Channel during the corresponding period.  相似文献   

7.
为了了解潮流从西北太平洋经吕宋海峡进入南海内的变化及其垂向结构,本文利用在吕宋海峡附近沿东西方向布放的多套潜标同步获得的高分辨率ADCP长时间连续观测上层海流资料,使用调和分析方法将实测海流分解成3部分:不随时间变化的定常流、周期性潮流和剩余流,并将潮流分解为正压潮流和斜压潮流。通过对实测海流中各组分的分析,得到以下结论:该区域潮流类型在不同深度上有明显变化;M2潮自吕宋海峡传入南海后强度显著减弱75%左右,K1、O1分潮在上层强度减弱约三分之一。从垂向变化来看,在潮流强度上,各站点垂直方向上潮流强度均发生变化。从方向上看,各分潮潮流椭圆东西向特征明显,长轴变化较大,短轴(南北向特征)垂向变化不显著;潮流运动主要沿逆时针方向,垂直方向上潮流明显减弱或增强时会发生转向。斜压潮流主要集中在上表层,100m左右以下随深度逐渐减弱。东西方向斜压潮流能量比正压潮流强,而南北向的流比较稳定,且斜压潮流能量远小于正压潮流。定常流强度在各站点呈现相似的变化趋势,随深度变化减弱。  相似文献   

8.
ADCP观测得到的2008年4月吕宋海峡流速剖面结构   总被引:1,自引:0,他引:1  
基于2008年4月22—26日吕宋海峡调查航次的下放式声学多普勒流速剖面仪(LADCP)和船载ADCP(SADCP)等观测资料,并采用潮波模式模拟结果去除潮流对观测资料的影响,观测结果表明:调查期间黑潮入侵南海的位置与1992年春季比较接近,其分支位于调查海区中部C2、C7、C8和C9站,表层黑潮在C8站分离为两支,分别流向C9和C2站,C9站北向流明显比C8站减弱。在C2站,黑潮分支位于400m层以浅,其最大西向流速为77cm/s,而在C7、C8和C9站黑潮分支位于500m层以浅,黑潮在入侵南海的过程中其核心深度逐渐变浅。上层黑潮明显作反气旋弯曲。本调查航次的观测结果在定性上支持吕宋海峡水交换有"三明治"垂直结构的特性。  相似文献   

9.
Cold deep water in the South China Sea   总被引:1,自引:0,他引:1  
Two deep channels that cut through the Luzon Strait facilitate deep (>2000 m) water exchange between the western Pacific Ocean and the South China Sea. Our observations rule out the northern channel as a major exchange conduit. Rather, the southern channel funnels deep water from the western Pacific to the South China Sea at the rate of 1.06 ± 0.44 Sv (1 Sv = 106 m3s−1). The residence time estimated from the observed inflow from the southern channel, about 30 to 71 years, is comparable to previous estimates. The observation-based estimate of upwelling velocity at 2000 m depth is (1.10 ± 0.33) × 10−6 ms−1, which is of the same order as Ekman pumping plus upwelling induced by the geostrophic current. Historical hydrographic observations suggest that the deep inflow is primarily a mixture of the Circumpolar Deep Water and Pacific Subarctic Intermediate Water. The cold inflow through the southern channel offsets about 40% of the net surface heat gain over the South China Sea. Balancing vertical advection with vertical diffusion, the estimated mean vertical eddy diffusivity of heat is about 1.21 × 10−3 m2s−1. The cold water inflow from the southern channel maintains the shallow thermocline, which in turn could breed internal wave activities in the South China Sea.  相似文献   

10.
1998年春夏南海温盐结构及其变化特征   总被引:11,自引:2,他引:11  
利用1998年5~8月“南海季风试验”期间“科学1”号和“实验3”号科学考察船两个航次CTD资料,分析了1998年南海夏季风暴发前后南海主要断面的温盐结构及其变化特征.观测发现,南海腹地基本被典型的南海水团所控制,但在南海东北部尤其是吕宋海峡附近,表层和次表层水明显受到西太平洋水的影响.季风暴发以后,南海北部表面温度有显著升高,升幅由西向东递减,而南海中部和南部表面温度基本没变,这使得南海北部东西向温度梯度和整个海盆南北向温度梯度均减小.北部断面表层盐度普遍由34以上降低到34以下,混合层均有所发展,是季风暴发后降水和风力加剧的结果.观测期间黑潮水跨越吕宋海峡的迹象明显但变化剧烈.4~5月,黑潮次表层水除在吕宋海峡中北部出现外,在吕宋岛以西亦有发现,表明有部分黑潮水从吕宋海峡南端沿岸向西进而向南进入南海.6~7月,次表层高盐核在吕宋海峡中北部有极大发展,但在吕宋岛以西却明显萎缩;虽然看上去黑潮水以更强的流速进、出南海,但对南海腹地动力热力结构的影响未必更大.一个超过34.55的表层高盐水体于巴拉望附近被发现,似与通过巴拉望两侧水道入侵南海的西太平洋水有关.  相似文献   

11.
In this study, we develop a variable-grid global ocean general circulation model(OGCM) with a fine grid(1/6)°covering the area from 20°S–50°N and from 99°–150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea(SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.  相似文献   

12.
Based on historical observations, ventilation of the Sulu Sea (SS) is investigated and, its interbasin exchange is also partly discussed. The results suggest that near the surface the water renewal process not only occurs through the Mindoro Strait (MS) and the Sibutu Passage, but also depends on the inflows through the Surigao Strait and the Bohol Sea from the Pacific and through the Balabac Strait from the South China Sea (SCS). Both inflows are likely persistent year round and their transports might not be negligible. Below the surface, the core layer of the Subtropical LowerWater (SLW) lies at about 200 m, which enters the SS through the Mindoro Strait not hampered by topography. Moreover, there is no indication of SLW inflow through the Sibutu Passage even though the channel is deep enough to allow its passage. The most significant ventilation process of the SS takes place in depths from 20a m to about 1200 m where intermediate convection driven by quasi-steady inflows through the Mindoro and Panay straits (MS-PS) dominates. Since the invaded water is drawn from the upper part of the North Pacific Intermediate Water (NPIW) of the SCS, it is normally not dense enough to sink to the bottom. Hence, the convective process generally can only reach some intermediate depths resulting in a layer of weak salinity minimum (about 34.45). Below that layer, there is the Sulu Sea Deep Water (SSDW) homogeneously distributed from 1200 m down to the sea floor, of which the salinity is only a bit higher (about 34.46) above the minimum. Observational evidence shows that hydrographic conditions near the entrance of the MS in the SCS vary significantly from season to season, which make it possi- ble to provide the MS-PS overflowwith denser water of higher salinity sporadically. It is hence proposed that the SSDW is derived from intermittent deed convection resulted from DroDertv changes of the MS-PS inflow.  相似文献   

13.
本文构造了一个考虑潮汐、中尺度涡和地形影响下的南海底部环流诊断模型。在该模型中,潮汐混合和涡致混合引起的垂直速率用一个类似的改进参数化方案来表示。该模型结果显示在南海深层吕宋海峡"深水瀑布"和斜压影响最大,潮汐作用和中尺度涡影响次之,风场的影响最小。斜压影响的整体效应与其他因素相反。潮汐混合与涡致混合具有明显的地形依赖性。潮汐混合主要集中在南海北部海盆地形较为陡峭的陆坡区和南海中部海山区,而涡致混合主要集中在海盆西边界区以及中部海山区。在不考虑吕宋海峡"深水瀑布"、潮汐和中尺度涡的情况下(对应吕宋海峡关闭),南海底部环流为反气旋式环流。考虑吕宋海峡"深水瀑布"后,南海底层环流为气旋式环流,而潮汐混合和涡致混合起到加强整个气旋式环流强度的作用。此外,该模型还给出了南海底部环流量级大小与地形坡度之间的密切关系,即地形坡度较大的地方,其流速也大。这对于现场观测有着一定的参考意义。最后,本文用尺度分析的方法从理论上分析了该模型的适用性,证实了该模型具有一定的可靠性。  相似文献   

14.
刘永芹  孙松  张光涛 《海洋与湖沼》2013,44(5):1200-1207
本文对2006年12月、2007年5月和6月在南黄海两个连续站S1-4和S3-3采集的梭形纽鳃樽的昼夜垂直移动进行了研究。结果表明, 在不同季节不同海域该种昼夜垂直移动行为略有差异。在S1-4站位, 12月份梭形纽鳃樽复体从未到达底层(50—70m), 在0—50m的水层中表现出不规则的昼夜垂直移动。从中午(12:00)到傍晚(18:00)主要分布在表层, 之后移动到较深的水层(10—30m), 而单体由于数量较少而未进行昼夜垂直移动分析; 5、6月份, 该种单体和复体都出现了明显的反向昼夜垂直移动, 即白天迁移到表层, 夜间向底层迁移, 5月份尤为明显。在S3-3站位, 12月份和5月份梭形纽鳃樽的单体和复体几乎在整个水层都有分布。12月份梭形纽鳃樽复体在夜间有向下移动的趋势, 在06:00时到达最底层, 白天主要分布在20m以上的水层中。5月份梭形纽鳃樽单体和复体昼夜垂直移动不明显, 但主要分布在10—20m的水层中。  相似文献   

15.
根据2001年3月份南海东北部航次调查温、盐资料,分析了2001年冬末春初南海东北部温、盐结构和环流的特征.分析结果表明:观测期间南海东北部环流主要受一次海盆尺度气旋型冷环流支配,冷环流呈现双核结构,垂向尺度接近1000 m.吕宋海峡内侧断面的水交换在600 m以浅海水流入南海,在断面南部(20°N以南)中层和深层有流出,断面法向地转流向西净输运量为6.9×106m3/s;直接的黑潮入侵不超过120.5°E,但有部分的黑潮水沿陆坡达到台湾岛西南部海域,并更有一部分逸入东沙岛以西海域,与南海水混合变性.  相似文献   

16.
吕宋海峡纬向海流及质量输送   总被引:24,自引:6,他引:24  
分析和计算了吕宋海峡PR21断面最近海洋调查的部分CTD资料和ADCP资料,再一次证明吕宋海峡常年存在纬向流。但对于天气尺度而言,该流型是多变的。根据高分辨率的海洋环流数值模式4a(1992~1996年)海平面高度(SSH)的输出值,运用地转关系估计了吕宋海峡纬向流的月平均值。研究表明;通过海峡流入、流出南海纬向流的深度一般达到500m左右,200m以上流速较大,平均流速为50cm/s,最大时达80cm/s以上。500m以下的纬向地转流流速较小,通常小于10cm/s.由大洋进入海峡的入流位置位于海峡的中部和南部,月平均入流最大值出现在11月,为50cm/s.位于海峡的北部和南部上层海洋的月平均出流,最大流速亦出现在11月,也为50cm/s,这与秋季北赤道流分叉位置最北(15°N),春季分叉位置最南(14°N)有关。上层流入、流出海峡的流量的月平均值分别约为10×106m3/s和5×106m3/s.当东北季风盛行时(从10月到翌年2月),流入海峡的流量远大于流出海峡的流量,两者的差可达8×106m3/s,而在其他季节两者的差仅为3×106m3/s.这说明东北季风盛行时,会有较多的水从南海南?  相似文献   

17.
The character of the water exchange in the Denmark Strait for the period of 1958–2006 is studied based on the results of the numerical experiments using the model of the ocean circulation developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences with a resolution of 0.25 degrees in latitude and longitude with 27 vertical levels. The calculations were performed for the North Atlantic area from 30° S, including the Arctic Ocean and the Bering Sea. The width of the Denmark Strait at 66° N is about 650 km, and the depth is approximately 550 m. The fields of the temperature, salinity, and density and the components of the current velocities were simulated. In this period, the average overflow of dense waters with the conventional potential density σ0 > 27.80 to the North Atlantic through the Denmark Strait was 1.86 ± 0.96 Sv, and, for the nearbottom and intermediate waters with σ0 > 27.50, it was 3.84 ± 1.31 Sv. The maximum values of the overflow transport through the strait were recorded in 1962, 1972, 1983, 1990, and 2000. Exactly these years showed the highest values of the North Atlantic oscillation (NAO) index. This fact confirms the domination of the decadal variability of the hydrogeological processes in the North Atlantic. The model section of the current velocity through the strait showed the occurrence of at least four well marked jets that vertically occupy the entire sectional area from the surface to the bottom. The two jets divided by a northward jet at the strait’s middle move southward along the Greenland slope. The northward current along Iceland is also identified. This structure of the currents is also supported by the analysis of the observed variability of the absolute topography of the ocean’s surface.  相似文献   

18.
The calculation of the circulation in South China Sea by a diagnostic model   总被引:1,自引:0,他引:1  
A high resolved two - dimensional linear global diagnostic model combining with the dynamical calculation is used to calculate ve- locity field in the South China Sea(SCS). The study of model results shows that eddy diffusion does not change basic structure of circulation in the SCS and does not change the direction of invasive water, but changes the value of transport considerably espe- cially in straits. The velocity field is not changed whether the wind stress is considered or not. This result shows the circulation is largely determined by a density field which well records most of the important contribution of the wind stress effect. Potential vor- ticity is calculated to testify the dynamics of the model results. The result shows that a good conservation of the nonlinear PV. This indicates most effects of the important nonlinear processes are well recorded in density and the nonlinear term is negligible so that the simplified model is reliable. The model results show the water exchanges between the SCS and open ocean or surrounding seas. Cold deep water invades through Luzon Strait and Warm shallow water is pushed out mainly through Karimata Straits. The model results also reveal the structure of the circulation in the SCS basin. In two circulations of upper and middle layers, a cyclon- ic one in the north and an anti-cyclonic one in the south, reflect the climatologic average of the circulation driven by monsoon. In the deep or bottom layer, these two circulations reflect the topography of the basin. Above the middle layer, invasive water enters westward in the north but the way of invasion of Kuroshio is not clear. Below the deep layer, a current goes down south near the east basin , and invasive water enters in the basin from the west Pacific.  相似文献   

19.
由于湍流混合直接观测技术难度大、成本高,很大程度限制湍流混合的研究,所以基于温、盐、流资料估算海洋湍流混合的方法应运而生。本文应用在吕宋海峡观测到的23个自由下降微结构湍流剖面仪观测数据和水文观测数据,首次对目前常用的Gregg-Henyey-Polzin(GHP)细尺度参数化、Mackinnon and Gregg(MG)参数化和Thorpe尺度方法进行比较研究,评估它们的适用性。发现GHP参数化方法能够很好地估算吕宋海峡的湍流混合。虽然GHP参数化方法估算的耗散率总体上要偏弱于观测的结果,但估算和观测的差异在2倍以内的结果占71%,与微结构湍流剖面仪观测到的耗散率在水平分布和垂向分布上呈现出相同的分布特征。基于MG参数化方法发现估算的吕宋海峡西侧1200m以浅的耗散率比观测值大,但总体上呈现出相同的分布特征。另外,MG参数化估算与观测差异在2倍以内的结果占58%。表明相比于GHP参数化方法,MG参数化方法的估算值更偏离观测值。Thorpe尺度方法在估算吕宋海峡的耗散率时,估算和观测的差异在2倍以内的结果仅有30%,70%的估算结果与观测结果相差高出1个量级,空间分布上与观测结果差异较大。对比吕宋海峡湍流混合参数化方法的结果表明GHP参数化方法最优,MG参数化方法其次,Thorpe尺度方法相对GHP和MG参数化方法较差。  相似文献   

20.
A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below 2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号