共查询到20条相似文献,搜索用时 25 毫秒
1.
We used daily maximum temperature data (1986–2100) from the COSMO-CLM (COnsortium for Small-scale MOdeling in CLimate Mode) regional climate model and the population statistics for China in 2010 to determine the frequency, intensity, coverage, and population exposure of extreme maximum temperature events (EMTEs) with the intensity–area–duration method. Between 1986 and 2005 (reference period), the frequency, intensity, and coverage of EMTEs are 1330–1680 times yr–1, 31.4–33.3°C, and 1.76–3.88 million km2, respectively. The center of the most severe EMTEs is located in central China and 179.5–392.8 million people are exposed to EMTEs annually. Relative to 1986–2005, the frequency, intensity, and coverage of EMTEs increase by 1.13–6.84, 0.32–1.50, and 15.98%–30.68%, respectively, under 1.5°C warming; under 2.0°C warming, the increases are 1.73–12.48, 0.64–2.76, and 31.96%–50.00%, respectively. It is possible that both the intensity and coverage of future EMTEs could exceed the most severe EMTEs currently observed. Two new centers of EMTEs are projected to develop under 1.5°C warming, one in North China and the other in Southwest China. Under 2.0°C warming, a fourth EMTE center is projected to develop in Northwest China. Under 1.5 and 2.0°C warming, population exposure is projected to increase by 23.2%–39.2% and 26.6%–48%, respectively. From a regional perspective, population exposure is expected to increase most rapidly in Southwest China. A greater proportion of the population in North, Northeast, and Northwest China will be exposed to EMTEs under 2.0°C warming. The results show that a warming world will lead to increases in the intensity, frequency, and coverage of EMTEs. Warming of 2.0°C will lead to both more severe EMTEs and the exposure of more people to EMTEs. Given the probability of the increased occurrence of more severe EMTEs than in the past, it is vitally important to China that the global temperature increase is limited within 1.5°C. 相似文献
2.
Zhang Ying 《大气和海洋科学快报》2012,5(6):514-520
The outputs of 17 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to investigate the temporal and spatial features of 2.0°C warming of the surface temperature over the globe and China under the Representative Concentration Pathways (RCP) 4.5 scenario. The simulations of the period 1860–1899 in the historical experiment are chosen as the baseline. The simulations for the 21st century in the RCP4.5 experiment are chosen as the future project. The multi-model ensemble mean (MME) shows that the global mean temperature would cross the 2.0°C warming threshold in 2047. Warming in most of the models would cross the threshold during 2030–2060. For local warming, high-latitude areas in the Northern Hemisphere show the fastest warming over the globe. Land areas warm substantially faster than the oceans. Most of the southern oceans would not exceed the 2.0°C warming threshold within the 21st century. Over China, surface warming is substantially faster than the global mean. The area-averaged warming would cross the 2.0°C threshold in 2034. Locally, Northwest China shows the fastest warming trend, followed by Central North China and Northeast China. Central China, East China, and South China are the last to cross the 2.0°C warming threshold. The diversity of the models is also estimated in this study. Generally, the spread among the models increases with time, and there is smaller spread among the models for the areas with the faster warming. 相似文献
3.
Climate models project a positive Indian Ocean Dipole(p IOD)–like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model and applying an overriding technique to its ocean component(version 2 of the Parallel Ocean Program), this study investigates the similarities and differences of the formation mechanisms for the changes in the tropical Indian Ocean during the p IOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, wind–thermocline–SST feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases. Some differences are also found, including the fact that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the p IOD but by the anomalous upper-ocean stratification under global warming. These findings are further examined through an analysis of the mixed layer heat budget. 相似文献
4.
On the Response of the Global Subduction Rate to Global Warming in Coupled Climate Models简 总被引:3,自引:0,他引:3
The response of the global subduction rate to global warming was assessed based on a set of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models. It was found that the subduction rate of the global ocean could be significantly reduced under a warming climate, as compared to a simulation of the present-day climate. The reduction in the subduction volume was quantitatively estimated at about 40 Sv and was found to be= primarily induced by the decreasing of the lateral induction term due to a shallower winter mixed layer depth. The shrinking of the winter mixed layer would result from intensified stratification caused by increased heat input into the ocean under a warming climate. A reduction in subduction associated with the vertical pumping term was estimated at about 5 Sv. F~rther, in the Southern Ocean, a significant reduction in subduction was estimated at around 24 Sv, indicating a substantial contribution to the weakening of global subduction. 相似文献
5.
Accurate surface air temperature(T_(2m)) data are key to investigating eco-hydrological responses to global warming.Because of sparse in-situ observations, T_(2m) datasets from atmospheric reanalysis or multi-source observation-based land data assimilation system(LDAS) are widely used in research over alpine regions such as the Tibetan Plateau(TP). It has been found that the warming rate of T_(2m) over the TP accelerates during the global warming slowdown period of 1998–2013, which raises the question of whether the reanalysis or LDAS datasets can capture the warming feature. By evaluating two global LDASs, five global atmospheric reanalysis datasets, and a high-resolution dynamical downscaling simulation driven by one of the global reanalysis, we demonstrate that the LDASs and reanalysis datasets underestimate the warming trend over the TP by 27%–86% during 1998–2013. This is mainly caused by the underestimations of the increasing trends of surface downward radiation and nighttime total cloud amount over the southern and northern TP, respectively. Although GLDAS2.0, ERA5, and MERRA2 reduce biases of T_(2m) simulation from their previous versions by 12%–94%, they do not show significant improvements in capturing the warming trend. The WRF dynamical downscaling dataset driven by ERA-Interim shows a great improvement, as it corrects the cooling trend in ERA-Interim to an observation-like warming trend over the southern TP. Our results indicate that more efforts are needed to reasonably simulate the warming features over the TP during the global warming slowdown period, and the WRF dynamical downscaling dataset provides more accurate T_(2m) estimations than its driven global reanalysis dataset ERA-Interim for producing LDAS products over the TP. 相似文献
6.
Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4°C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4°C global warming will occur is 2084. Based on the median results of models that project a 4°C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-to-noise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5°C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the inter-model consistency is better for temperature than for precipitation. 相似文献
7.
Warming and drying trends on the Tibetan Plateau (1971–2005) 总被引:1,自引:0,他引:1
Hong Xie Jiansheng Ye Xiuming Liu Chongyi E 《Theoretical and Applied Climatology》2010,101(3-4):241-253
Annual and seasonal trends in maximum and minimum temperatures, precipitation and vapour pressure deficit (VPD) were examined with the goal of understanding trends in temperature and moisture across the Tibetan Plateau, using meteorological data (1971–2005) collected at 63 stations. Trends in pan evaporation (PE; 1971–2001, 68 stations) and runoff (1971–2002) in the headwater of the Yellow River were also analysed. Positive trends in maximum and minimum temperatures were observed across the Tibetan Plateau. The highest increases were observed during winter, with results from the majority of stations statistically significant at the 95% level. A decrease trend in diurnal temperature range (DTR) was also observed. Trends in annual and seasonal precipitation and VPD were positive, while the trend in PE was negative. However, the increase in precipitation was not as pronounced as the increase in temperature. Although PE decreased during the time series, actual evaporation probably increased because of the warming across the Tibetan Plateau, where the annual potential water loss measured as PE is three to four times the annual water supply by precipitation. Warming was expected to increase evapotranspiration, causing more water vapour to escape into the atmosphere, thus counteracting or even exceeding the slight increase in precipitation. The increases in annual and seasonal VPD trends indicated a drying tendency and were further substantiated by the observed decrease in runoff in the headwater catchment of the Yellow River. The results provided insight into recent climatic changes across the Tibetan Plateau. 相似文献
8.
Existing studies contend that latent heating(LH) will replace sensible heating(SH) to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV) after it moves off the Tibetan Plateau(TP). However, in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH) conditions rapidly change. How LH gradually replaces SH to become the dominant factor in the developme... 相似文献
9.
Xuewei FANG Zhi LI Chen CHENG Klaus FRAEDRICH Anqi WANG Yihui CHEN Yige XU Shihua LYU 《大气科学进展》2023,40(2):211-222
Since the 1990s, the Qinghai–Tibetan Plateau(QTP) has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground. A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG) has long been recognized. Still, a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will b... 相似文献
10.
A large amount of accumulated precipitation was recorded over the Eastern Periphery of the Tibetan Plateau (EPTP) in August 2020. Using hourly rain gauge records and the ERA5 reanalysis dataset, we analyzed the unique characteristics of rainfall in August and the accompanying circulation conditions and conducted a comparison with previous data. This record-breaking amount of accumulated rainfall was centered on the northern slope of the EPTP. This location was in contrast with the historical records of the concentration of rainfall over the middle and southern slopes. The hourly rainfall in August 2020 was both more frequent and more intense than the climatological mean rainfall. An amplification effect of the topography was observed, with the precipitation over the EPTP showing a more significant change with terrain height in August 2020. A circulation analysis showed that cold (warm) anomalies existed over the north (south) of approximately 35°N compared with those in the years when the southern EPTP received more rain. The western Pacific subtropical high was more intense and extended to the west, and the low-level cold air from the north was more active. The enhanced low-level southerly winds on the periphery of the subtropical high injected warm, moist air further north than the climatological mean. These winds became easterly near the northern EPTP and were forced to ascend by the steep terrain. 相似文献
11.
Projected changes in summer water vapor transport over East Asia under the 1.5°C and 2.0°C global warming targets 下载免费PDF全文
水汽输送的变化对于降水的变化有重要贡献。基于优选的13个CIV1IP5模式发现:RCP4.5和RCP8.5排放情景下,1.5°C和2.0°C增暖时东亚夏季水汽输送均加强,且2.0°C增暖时模式间一致性更好;水汽含量的增加对东亚南部和北部水汽输送的加强均有贡献,东亚南部水汽输送的加强也与低层环流的加强相联系。0.5°C额外增暖(1.5°C和2.0°C增暖间比较)时,两种排放情景下水汽输送的变化在我国南海与东北地区存在差异,使得两个地区降水变化存在差异;水汽输送的变化与低层环流的变化关系密切,且模式间一致性相对低。 相似文献
12.
TheInfluenceofTibetanPlateauontheInterannualVariabilityofAsianMonsoon①WuAiming(吴爱明)andNiYunqi(倪允琪)DepartmentofAtmosphericScie... 相似文献
13.
Recent Progress in the Impact of the Tibetan Plateau on Climate in China 总被引:14,自引:0,他引:14
Studies of the impacts of the Tibetan Plateau (TP) on climate in China in the last four years are reviewed. It is reported that temperature and precipitation over the TP have increased during recent decades. From satellite data analysis, it is demonstrated that most of the precipitation over the TP is from deep convection clouds. Moreover, the huge TP mechanical forcing and extraordinary elevated thermal forcing impose remarkable impacts upon local circulation and global climate. In winter and spring, stream flow is deflected by a large obstacle and appears as an asymmetric dipole, making East Asia much colder than mid Asia in winter and forming persistent rainfall in late winter and early spring over South China. In late spring, TP heating contributes to the establishment and intensification of the South Asian high and the abrupt seasonal transition of the surrounding circulations. In summer, TP heating in conjunction with the TP air pump cause the deviating stream field to resemble a cyclonic spiral, converging towards and rising over the TP. Therefore, the prominent Asian monsoon climate over East Asia and the dry climate over mid Asia in summer are forced by both TP local forcing and Eurasian continental forcing.
Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast.
On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP lea 相似文献
Due to the longer memory of snow and soil moisture, the TP thermal status both in summer and in late winter and spring can influence the variation of Eastern Asian summer rainfall. A combined index using both snow cover over the TP and the ENSO index in winter shows a better seasonal forecast.
On the other hand, strong sensible heating over the Tibetan Plateau in spring contributes significantly to anchor the earliest Asian monsoon being over the eastern Bay of Bengal (BOB) and the western Indochina peninsula. Qualitative prediction of the BOB monsoon onset was attempted by using the sign of meridional temperature gradient in March in the upper troposphere, or at 400 hPa over the TP. It is also demonstrated by a numerical experiment and theoretical study that the heating over the TP lea 相似文献
14.
15.
在青藏高原大地形及其邻近区域,低层等压面的资料是从对流层中上层通过外插法插值得到的,不能代表高原地区近地面的实际天气系统.因此,在常用的等压面分析方法中,如何较准确地分析高原近地面的天气系统是个难题.本文引入有限区域矢量场分解的平均调和-余弦算法,基于σ面坐标及资料,引入一个满足准地转近似的新变量,其作用相当于等压坐标中的重力位势,称为等σ面上的相当重力位势,在等σ面上给出相当重力位势分布图后,可直接在等σ面上就能分析出天气系统.在方法介绍基础上,本文以2008年7月20日08时到21日14时(北京时)青藏高原上一次高原低涡东移的个例为例,对等σ面上的相当重力位势对天气系统和天气形势的描述能力进行考察.结果表明:在美国国家环境预测中心/美国国家大气研究中心(NCEP/NCAR)海平面气压分析场上,高原附近有一些长期存在的气压异常偏低系统,高原上也存在很多面积较小气压却异常高(或低)的天气系统,这些系统都是由于外插时受高原地形影响而计算出来的误差,不是高原地区近地面天气系统的正确反映,因而无法正确描述近地面高原涡东移出高原并与四川盆地附近西南涡耦合后加强的过程.而运用相当重力位势变量来表示高原近地面的天气形势后,能够清晰反映高原近地面上此次高原涡东移南压引起低层西南涡加强的过程,可把高原大地形上的天气分析与下游地区天气形势分析更好地衔接起来,在天气分析方面具有明显的好处. 相似文献
16.
The Persistent Heavy Rainfall over Southern China in June 2010:Evolution of Synoptic Systems and the Effects of the Tibetan Plateau Heating 总被引:1,自引:0,他引:1 下载免费PDF全文
This study investigates influencing weather systems for and the effect of Tibetan Plateau (TP)’s surface heating on the heavy rainfall over southern China in June 2010, focusing on the four persistent heavy rainfall events during 14-24 June 2010. The ma jor weather systems include the South Asian high, midlatitude trough and ridge, western Pacific subtropical high in the middle troposphere, and shear lines and eastward-moving vortices in the lower troposphere. An ensemble of convection-permitting simulations (CTL) is carried out with the WRF model for these rainfall events, which successfully reproduce the observed evolution of precipitation and weather systems. Another ensemble of simulations (SEN) with the surface albedo over the TP and its southern slope changed artificially to one, i.e., the surface does not absorb any solar heating, otherwise it is identical to CTL, is also performed. Comparison between CTL and SEN suggests that the surface sensible heating of TP in CTL significantly affects the temperature distributions over the plateau and its surroundings, and the thermal wind adjustment consequently changes atmospheric circulations and properties of the synoptic systems, leading to intensified precipitation over southern China. Specifically, at 200 hPa, anticyclonic and cyclonic anomalies form over the western and eastern plateau, respectively, which enhances the southward cold air intrusion along the eastern TP and the divergence over southern China;at 500 hPa, the ridge over the northern plateau and the trough over eastern China are strengthened, the southwesterly flows along the northwestern side of the subtropical high are intensified, and the positive vorticity propagation from the plateau to its downstream is also enhanced significantly;at 850 hPa, the low-pressure vortices strongly develop and move eastward while the southwesterly low-level jet over southern China strengthens in CTL, leading to increased water vapor convergence and upward motion over the precipitation region. 相似文献
17.
Characteristics and Numerical Simulation of the Tropical Intraseasonal Oscillations under Global Warming 下载免费PDF全文
Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999,the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associated with global warming are analyzed and compared in this study.It is found that during the last 20 years,the ISO has weakened in the central equatorial Pacific Ocean,but becomes more active in the central Indian Ocean and the Bay of Bengal;under the background of the global warming,increase in the amplitude of ISO intensity suggests that the ISO has become more active than before,with an obvious seasonal cycle,i.e.,strong during winter and spring,but weak during summer and autumn;the energy of the upper tropospheric zonal winds has more concentrated in wave numbers 1-3,and the frequency of ISO tended to increase. Comparison between the results of control experiment and CO_2 increase (1% per year) experiment of FGOALS-1.0g (developed at LASG) with the first and second 20-yr observations,is also performed. respectively.The comparative results show that the spatial structure of the ISO was well reproduced,but the strength of ISO was underestimated.On the basis of space-time spectral analysis,it is found that the simulated ISO contains too much high frequency waves,leading to the underestimation of ISO intensity due to the dispersion of ISO energy.However,FGOALS-1.0g captured the salient features of ISO under the global warming background by two contrast experiments,such as the vitality and frequency-increasing of ISO in the central Indian Ocean and the Bay of Bengal. 相似文献
18.
Areview of the effects of theTibetan Platean on circulation features over the plateau and its surrounding areas has been made, with a special emphasis upon the monsoon circulations in South Asin and East Asia. This includes estimates of heat sources, dynamic and thermal effects of the plateau, adn effects of the plateau on summer and winter monsoons. Major progresses made in this aspect by Chinese meteorologists have been specifically described and are compared with the achievements made by the meteorologists of other countries. 相似文献
19.
Progress in Research of Stratosphere-Troposphere Interactions: Application of Isentropic Potential Vorticity Dynamics and the Effects of the Tibetan Plateau 总被引:4,自引:0,他引:4 下载免费PDF全文
REN Rongcai WU Guoxiong CAI Ming SUN Shuyue LIU Xin LI Weiping 《Acta Meteorologica Sinica》2014,28(5):714-731
This paper reviews recent progress in understanding isentropic potential vorticity (PV) dynamics during interactions between the stratosphere and troposphere, including the spatial and temporal propagation of circulation anomalies associated with the winter polar vortex oscillation and the mechanisms of stratosphere- troposphere coupling in the global mass circulation framework. The origins and mechanisms of interannual variability in the stratospheric circulation are also reviewed. Particular attention is paid to the role of the Tibetan Plateau as a PV source (via its thermal forcing) in the global and East Asian atmospheric circulation. Diagnosis of meridional isentropic PV advection over tile Tibetan Plateau and East Asia indicates that the distributions of potential temperature and PV over the east flank of the Tibetan Plateau and East Asia favor a downward and southward isentropic transport of high PV from the stratosphere to the troposphere. This transport manifests the possible influence of the Tibetan Plateau on the dynamic coupling between the stratosphere and troposphere during summer, and may provide a new framework for understanding the climatic effects of the Tibetan Plateau. 相似文献
20.
《中国气象科学研究院年报》2000,(1)
TheprojectStudyontheResponseofAntarcticRegiontoGlobalChangeandItsFeedbackEffect(98-927)isoneoftheNationalKeyScienceandTechnologyProjectsduringthe9thFive-YearPlan.CAMSparticipatesinthesub-projectResearchontheAntarcticAtmosphereandUpper-AtmosphericPhysicalProcessesandTheirResponsetoGlobalChange,undertakingtworesearches:MonitoringofAntarcticOzoneandUltravioletRadiationandTheirVariationMechanismStudy;andObservationalResearchontheInteractionProcessbetweenAntarcticIce/SnowandAtmosp… 相似文献