首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
利用2016年夏季长江河口现场水文特性与湍流微结构观测资料, 分析了长江河口水体温盐结构、层化发育、湍流与混合特征。结果表明: 1)夏季长江河口水体密度层化结构明显, 根据各层水体密度梯度差异, 可将水体分为底部混合层和上层密度跃层, 两部分的密度层化界限与浮力频率等值线lg N 2 = - 4.0接近。2)底部混合层湍动能耗散率大, 层化结构弱, 水体分层稳定性弱; 上层密度跃层湍动能耗散小, 层化结构强, 水体分层稳定性强, 这有利于河口内波的发育与传播。3)在密度层化的作用下, 水体的湍动能耗散率、湍动能剪切生成及浮力通量的能量关系在一定范围内符合湍动能局部能量平衡方程。不同层之间的湍流弗劳德数Frt和湍流雷诺数Ret在Frt-Ret平面上呈现明显的分区, 与经典的分层剪切流理论基本吻合。  相似文献   

2.
利用高光谱监测数据反演浮游植物种群组成是当前海洋光学和水色遥感的研究热点。文章采用大西洋经向断面航次中走航式观测系统测量的海水总颗粒物吸收光谱数据, 尝试建立了两种模型对浮游植物粒级结构(Phytoplankton size class, 简称PSC)进行反演和比较讨论。一类模型是基于总颗粒物吸收光谱高斯分解获得的典型波段高斯带强度与色素浓度之间的关系, 建立了偏最小二乘回归模型(Partial Least Squares regression model, 简称PLS回归模型); 另一类模型是采用长波波段吸收基线高度推算海水总叶绿素a浓度, 进而根据Brewin等(2010)生物量算法推算PSC的三组分模型(简称三组分模型)。模型比较验证结果显示, 两类模型对海水总叶绿素浓度的反演都有较高的精度, 相对偏差ME在15%左右; 对于三个粒级浮游植物对应的叶绿素浓度(Pico级Cp, Nano级Cn, Micro级Cm)的反演效果也相当, PLS回归模型反演的ME分别为28.4%、31.9%和41%, 三组分模型反演的ME分别为31%、35.9%、37.7%。研究结果初步表明了采用高光谱吸收系数反演浮游植物种群结构的潜在优势, 可为不同海域走航式高光谱观测系统的推广应用提供思路。  相似文献   

3.
颗粒物粒径分布(Particle Size Distribution, PSD)代表了颗粒物浓度与颗粒物粒径之间的关系, 影响着海洋生态环境和水体光学特性等。文章基于2016年夏季航次调查的生物光学剖面数据, 研究了南海海盆海域PSD的分布特征。研究发现, 幂律函数可以较好地拟合南海海盆区域的PSD, 对数空间中的实测的PSD与模拟的PSD平均决定系数高达0.95。PSD斜率(ξ)的分布范围为[1.27, 7.65], 均值为3.93±0.56。南海海盆区域表层水体的ξ均值与全球大洋表层水体的ξ均值相近, 但高于海湾等表层水体的ξ均值。ξ能较好地表征颗粒物平均粒径DA的大小, 两者存在明显负相关关系, 即ξ值越高, DA越小; 反之, DA越大。通过分析T1断面的生物光学剖面数据及总体平均的PSD剖面数据, 发现PSD剖面分布特征如下: 1)表层水体的ξ值相对较高, 且DA值相对较低, 推测可能是由于微微型藻类为主导颗粒物所致; 2) ξ值极小值层出现在次表层叶绿素浓度极大值层(Subsurface Chlorophyll Maximum Layer, SCML)中, 并伴随DA极大值层的出现, 其原因可能是SCML中的大粒径浮游植物占比显著增加; 3)弱光层中的ξ值较SCML中的高, 但略低于表层的ξ值, 而DA则位于表层与SCML的DA之间, 这可能与浮游植物及其碎屑的絮凝、分解、沉降等过程相关。PSD特征影响着海水的固有光学特性, 分析发现: 由于SCML中的叶绿素浓度增加, 颗粒物散射系数(bp(532))和颗粒物后向散射系数(bbp(532))也相应呈现显著增加的趋势。弱光层中的平均bp(532)与平均bbp(532)最小。ξ与颗粒物衰减光谱斜率之间呈高分散性, Boss 等(2001b)的模型适合用于粗略估算区域性的ξ分布范围及均值。  相似文献   

4.
A method based on mathematical modeling of the near-shore dynamics is suggested to calculate the annual mean cross-shore sediment flux q* at the coastal zone boundary. This method is applied to several sand coast profiles located in various geographical regions and exposed to energetic impacts of different scale. It is shown that the fluxes can be either positive (directed to the shore) or negative, and the magnitudes found agree with the known estimates based on other approaches. A conclusion is made that the resulting direction of q* is controlled by moderate storms with regime cumulative exedence from 1 to 10%. The wave periods, bottom slope, and sediment grain size play a special role in the process. An empirical criterion is found that allows one to predict the direction of the sediment flux crossing the coastal zone boundary.  相似文献   

5.
Material transport through the shelf edge to the deep ocean determines the fate of particulate matter generated in productive coastal seas. In stratified estuaries, onshore flow in the bottom layer generally keeps particulate matter generated in the upper layer and settled down to the bottom layer within the estuaries. AT the shelf edge of Tokyo Bay under the condition of average onshore flow in the bottom layer, we observed higher vertical sediment flux during ebb than flood tidal currents. The on-shelf and off-shelf differences in turbulent mixing and water depth mainly cause such difference in sediment flux. We propose to call this export process of particulate matter the tidal pump at the shelf edge.  相似文献   

6.
阿拉伯海东南海域盐度收支的季节变化   总被引:4,自引:0,他引:4  
采用SODA海洋同化产品的月平均资料,本文分析了阿拉伯海东南海域表层盐度的季节变化特征,发现局地海面淡水通量不能解释盐度的变化。两个典型区域的表层海水盐度收支分析表明,海洋的平流输送是造成阿拉伯海东南海域盐度冬季降低、夏季升高的主要原因,而淡水通量仅在夏季印度西侧沿岸区域造成盐度降低。冬季,东北季风环流将孟加拉湾北部的低盐水沿同纬度输送到阿拉伯海,然后向北输送,使表层海水盐度降低;夏季,西南季风环流把阿拉伯海西北部的高盐水向南、向东输送,使阿拉伯海东南海域盐度升高。受地理位置因素的影响,阿拉伯海东南海域表层盐度的变化冬季明显强于夏季。  相似文献   

7.
Organic carbon flux from eutrophicated Tokyo Bay to the Pacific Ocean is estimated as 260 ton C day–1 based on the horizontal gradient of COD and the dispersion coefficient at the bay mouth. Also, carbon flux from the air or from the open ocean to Tokyo Bay is estimated as 156 ton C day–1. If we suppose that five percent of the coastal seas in the world might be eutrophicated as Tokyo Bay and the organic carbon flux from the shelf to the open ocean in other coastal seas might be one third of that in Tokyo Bay, 1.12 G tons year–1 would be transported from the eutrophicated coastal seas to the open ocean and such carbon flux may account for the missing sink in the global carbon budget.  相似文献   

8.
A model explaining the mechanism of alongshore bar formation from the point of view of the sediment balance in the surf zone is considered. A cloud of suspended matter that appears during wave breaking is transported shoreward and simultaneously sediments forming a vertical material flux directed to the bottom (S). Simultaneously, an undertow generates a horizontal offshore flux of suspended matter q x . Under these conditions, the sediment balance is determined by the equality of the flux -S and the gradient dq x /dx. The bottom profile satisfying the balance equation is a bar profile with the crest at the point of the flux maximum -S. The model predicts a concave profile of the seaside slope and a concave-convex profile of the slope in the trough. A conclusion is reached on the basis of the calibration and verification of the model based on the field data that the suggested mechanism manifests itself differently in the outer and inner zones of the coastal zone. In the inner zone, the horizontal size of the bar is determined by the length of short wind waves, while, in the outer one, it is determined by the length of the infragravity waves related to the groups of short waves. It is shown that the model can be applied to estimate the parameters of the largest bar in the inner part of the coastal zone.  相似文献   

9.
10.
I am extremely grateful and honored for being awarded the Okada Prize (1985) for my study. The present article reviews my research on the distribution, behavior and fate of PCBs in the marine environment. The outline of this study is summarized as follows:
  1. Polychlorinated biphenyls (PCBs) were detectable in the wide range of environmental media and biota of the Seto-Inland Sea, Japan, in which much high concentrations were found in sediment and biological samples due to their hydrophobic, lipophilic and less biodegradable properties as well as their extensive production and use in estuarine and coastal regions.
  2. PCBs extend the boundaries of their distribution all over the global environment, being evidenced by their occurrence in open ocean atmosphere, hydrosphere and biosphere, even in Antarctica. The global contamination of PCBs is much more prominent in northern hemisphere than in southern hemisphere.
  3. The sinking rate of PCBs from surface to deeper layers in open ocean water column is relatively slower in tropical waters than in high latitude ones. This implies the possible prolonged contamination of persistent synthetic organic chemicals in the tropical marine environment.
  4. The bioaccumulation processes in marine ecosystems can be explained by the physicochemical and biochemical properties of PCBs and the metabolic capacity of organisms. In higher animals, additional factors such as parturition and lactation are also related to this process.
  5. Total PCB load in global environment was estimated to be about 370 thousand tons. Of this, most amounts were in coastal sediment and open ocean water. Presently, about 780 thousand tons of PCBs are still in use mainly in electrical equipments. In order to reduce the PCB levels in marine environment, pertinent measures to prevent the further discharge and safe disposal of PCBs are required.
  相似文献   

11.
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara–Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5–20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.  相似文献   

12.
Disequilibrium between 234Th and 238U in water column profiles has been used to estimate the settling flux of Th (and, by proxy, of particulate organic carbon); yet potentially major non-steady-state influences on 234Th profiles are often not able to be considered in estimations of flux. We have compared temporal series of 234Th distributions in the upper water column at both coastal and deep-water sites in the northwestern Mediterranean Sea to coeval sediment trap records at the same sites. We have used sediment trap records of 234Th fluxes to predict temporal changes in water column 234Th deficits and have compared the predicted deficits to those measured to determine whether the time-evolution of the two coincide. At the coastal site (327 m water depth), trends in the two estimates of water column 234Th deficits are in fairly close agreement over the 1-month deployment during the spring bloom in 1999. In contrast, the pattern of water column 234Th deficits is poorly predicted by sediment trap records at the deep-water site (DYFAMED, 2300 m water depth) in both 2003 and 2005. In particular, the transition from a mesotrophic to an oligotrophic system, clearly seen in trap fluxes, is not evident in water column 234Th profiles, which show high-frequency variability. Allowing trapping efficiencies to vary from 100% does not reconcile the differences between trap and water column deficit observations; we conclude that substantial lateral and vertical advective influences must be invoked to account for the differences.Advective influences are potentially greater on 234Th fluxes derived from water column deficits relative to those obtained from traps because the calculation of deficits in open-ocean settings is dominated by the magnitude of the “dissolved” 234Th fraction. For observed current velocities of 5–20 cm s−1, in one radioactive mean-life of 234Th, the water column at the DYFAMED site can reflect 234Th scavenging produced tens to hundreds of kilometers away. In contrast, most of the 234Th flux collected in shallow sediment traps at the DFYFAMED site was in the fraction settling >200 m d−1; in effect the sediment trap can integrate the 234Th flux over distances 40-fold less than water column 234Th distributions. In some sense, sediment trap and water column sampling for 234Th provide complementary pictures of 234Th export. However, because the two methods can be dominated by different processes and are subject to different biases, their comparison must be treated with caution.  相似文献   

13.
A superficial sediment layer (SL) is the top 2–3 mm layer of surface sediment that may contribute to high upward nutrient flux. To study the characteristics and the biogeochemical processes in the superficial layer, the seasonal variation in the total phytopigments (chlorophyll a and pheo-pigments), total organic carbon (TOC), and total nitrogen (TN) of the surface sediments in a shallow coastal area, Shido Bay, were measured, and the influence of the superficial sediment layer on nutrient flux at the sediment–water interface was investigated. TOC and TN content were relatively constant for the SL and subsurface layers (0–1 and 1–2 cm) during the study period. In contrast, total phytopigments content was higher in the SL layer than in the subsurface layers. The results of upward nutrient flux experiments showed higher nutrient release within the whole sediment core (SL remaining) than the SL-less (SL removed) core. Moreover, high nutrient fluxes were observed during the high temperature season, indicating that seasonal variation in nutrient flux was regulated by temperature. Moreover, in the low temperature season, the SL seemed to absorb nutrients, probably because of microphytobenthos photosynthesis that took up the nutrients under the sufficient light penetration to the sea floor.  相似文献   

14.
Owing to lack of observational data and accurate definition,it is difficult to distinguish the Kuroshio intrusion water from the Pacific Ocean into the South China Sea(SCS).By using a passive tracer to identify the Kuroshio water based on an observation-validated three-dimensional numerical model MITgcm,the spatio-temporal variation of the Kuroshio intrusion water into the SCS has been investigated.Our result shows the Kuroshio intrusion is of distinct seasonal variation in both horizontal and vertical directions.In winter,the intruding Kuroshio water reaches the farthest,almost occupying the area from 18°N to 23°N and 114°E to 121°E,with a small branch flowing towards the Taiwan Strait.The intrusion region of the Kuroshio water decreases with depth gradually.However,in summer,the Kuroshio water is confined to the east of 118°E without any branch reaching the Taiwan Strait;meanwhile the intrusion region of the Kuroshio water increases from the surface to the depth about 205 m,then it decreases with depth.The estimated annual mean of Kuroshio Intrusion Transport(KIT) via the Luzon Strait is westward to the SCS in an amount of –3.86×106 m3/s,which is larger than the annual mean of Luzon Strait Transport(LST) of –3.15×106 m3/s.The KIT above 250 m accounts for 60%–80% of the LST throughout the entire water column.By analyzing interannual variation of the Kuroshio intrusion from the year 2003 to 2012,we find that the Kuroshio branch flowing into the Taiwan Strait is the weaker in winter of La Ni?a years than those in El Ni?o and normal years,which may be attributed to the wind stress curl off the southeast China then.Furthermore,the KIT correlates the Ni?o 3.4 index from 2003 to 2012 with a correlation coefficient of 0.41,which is lower than that of the LST with the Ni?o 3.4 index,i.e.,0.78.  相似文献   

15.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   

16.
悬浮泥沙和叶绿素是海洋水色的重要部分,是反映河口海岸地区生态环境状况的重要指标。本文基于Landsat TM/ETM+/OLI遥感影像,在不依赖地面实测数据的条件下,结合水文气象数据,利用光谱信息建立水色遥感模型对莱州湾1996—2015年不同时期的悬浮泥沙和叶绿素变化进行研究。研究结果表明:(1)此模型可以快速反演出较大空间尺度内的水色时空分布情况。(2)1996—2015年这一时期内悬浮泥沙浓度变化明显,枯水期的悬浮泥沙扩散范围总体大于丰水期,悬浮泥沙高浓度区主要分布在黄河口附近海域和沿岸区域,泥沙主要来源于陆源输沙和海水中的泥沙再悬浮,悬浮泥沙的扩散主要受潮流的影响,风和波浪等动力因素也在一定程度上影响着悬浮泥沙的扩散;(3)此外,莱州湾叶绿素高浓度区主要分布在莱州湾东—南部海域,其分布具有明显的季节性,春季(5月)海水温度升高,水中营养物质垂直混合好使得叶绿素浓度处于较高态势。  相似文献   

17.
Rivers draining into the Gulf of Papua (GOP) from the Papua New Guinea mainland deliver approximately 340 × 106 t yr–1 of sediment to the marine environment. The terrestrially derived sediment contains 1.1 ± 0.2% particulate organic carbon with a carbon-isotope composition of –26.5 ± 0.2, and amounts to 3.7 ± 0.7 × 106 t yr–1. The carbon-isotope composition of sediments in the Gulf of Papua indicates that 40% of the sediment cover contains 75% or more terrestrially derived carbon. Suspended sediments that are transported beyond the delta complex of the Fly River are transported north and northwest, augmented by sediments from other rivers along the coast of the GOP. The carbon-isotope results suggest that a significant quantity of terrestrially derived sediment escapes from the GOP, either along the coastlines to east and west or into the deep ocean via the Moresby and Pandora troughs. Little sediment travels south onto the Great Barrier Reef shelf. Extrapolating the results from this study to the region of Oceania suggests a total flux of particulate organic carbon to the world's oceans from the islands of Oceania of ~ 90 × 106 t yr–1 or twice the flux of riverine POC from the major rivers of North America, South America, and Africa combined. While such a calculation must be considered illustrative only, the similar tectonic, geomorphologic, and climatic features of the islands of Oceania suggest that the calculation is unlikely to be grossly in error and that the rivers of Oceania therefore represent a major but poorly documented source of sediment and organic carbon to the global ocean.  相似文献   

18.
杜渺 《海岸工程》2000,19(3):39-45
介绍了浙江东南沿海的台州市及所属玉环县、温州市及所属乐清市、瓯海区等地面实施海洋“蓝色工程”的丰富实践和新鲜经验。文中借鉴浙东南沿海大开发的成功经验,结合我国东部沿海其它地区特别是苏北沿海的实际,提出了做出滩涂开发利用、发展海洋经济的总体战略构想。  相似文献   

19.
The Yellow River cut through Sanmenxia Gorge and discharged into the sea via the North China Plain in 150 ka BP; since then, around 86 000 × 108 t sediment has been transported passing Sanmenxia Gorge. Based on land use and land cover changes in Loess Plateau and other available evidence, an estimate of the Yellow River sediment budget is presented here: about 72% of the sedimentary material was trapped in the North China Plain and the remainder(i.e., 26%) escaped to the sea. At the present stage, 0.2×108 t/a suspended sediment of the Yellow River enter the northern Yellow Sea. The transport pattern is determined mainly by the shelf current system. Annually 0.2×108–0.3×108 t of suspended particles are carried to the East China Sea; the materials are derived mainly from coastal and subaqueous delta erosion associated with the abandoned Yellow River on the Jiangsu coast. Since 1972, the lower Yellow River started to have a situation of continuous no-flow. During 1996–2000, the annual water flow and sediment discharge are only 19%, as compared with normal years(i.e., average for 1950–1979). In response to global warming and increase of water diversion from the Yellow River for industrial and urban use, the sediment flux of the Yellow River to the sea will most likely remain small in the next two to three decades.  相似文献   

20.
Understanding sediment movement in coastal areas is crucial in planning the stability of coastal structures, the recovery of coastal areas, and the formation of new coast. Accretion or erosion profiles form as a result of sediment movement. The characteristics of these profiles depend on the bed slope, wave conditions, and sediment properties. Here, experimental studies were performed in a wave flume with regular waves, considering different values for the wave height (H0), wave period (T), bed slope (m), and mean sediment diameter (d50). Accretion profiles developed in these experiments, and the geometric parameters of the resulting berms were determined. Teaching–learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms were applied to regression functions of the data from the physical model. Dimensional and dimensionless equations were found for each parameter. These equations were compared to data from the physical model, to determine the best equation for each parameter and to evaluate the performances of the TLBO and ABC algorithms in the estimation of the berm parameters. Compared to the ABC algorithm, the TLBO algorithm provided better accuracy in estimating the berm parameters. Overall, the equations successfully determined the berm parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号