首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
选取东南亚中南半岛地区作为模拟区域,基于高分辨率的遥感观测森林变化数据和WRF数值模式,设计毁林前后的两种情景对旱季气候进行模拟,评估NoahMP、CLM和Noah mosaic三种陆面过程方案对热带毁林增温响应的模拟能力。结果表明,CLM方案在模拟历史气温中有着更好的表现,Noah mosaic方案的结果存在明显低估。然而,对比毁林前后两种情景的模拟结果,本文发现,只有采用了"次格网"方式的Noah mosaic方案较好地模拟出毁林增温响应特征。在格网尺度采用"主导类型"计算方式的NoahMP方案没有合理地呈现出森林损失对区域气候的影响。理论上,CLM模式在计算中同时考虑格网内所有植被类型,然而本文发现CLM方案在主导类型不变的格网对森林损失比例不敏感,而且对毁林反馈的模拟结果与NoahMP方案的结果更接近。据此推测,在WRF模式耦合CLM方案的过程中,格网内参数处理方式可能产生了错误,实际采用的是"主导类型"方式。在模拟土地覆盖类型变化对气候的影响时,本文推荐使用Noah mosaic方案。同时,建议在未来版本的WRF模型中修正目前耦合的CLM方案关于次格网方法的处理方式,提供更合理的水热通量模拟。  相似文献   

2.
陆面过程参数化对太湖地区雷暴过程模拟的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
以2010年8月发生在太湖地区的一次雷暴过程为例,利用WRF模式进行48 h的短期天气模拟,分析两个陆面参数化方案(Noah方案和RUC方案)对雷暴过程模拟的影响。对比模式结果与实况降水以及太湖地区两个站点的近地面要素表明:雷暴过程对陆面参数化方案的选取较为敏感,不同陆面参数化方案可影响雷暴发生的时间、地点及强度,两种方案的降水中心值差达40 mm以上,其中Noah方案所模拟的降水与实况更为接近。通过对两个方案模拟的物理量场的对比分析发现,RUC方案中对流发展滞后于Noah方案2 h;这表明陆面过程对雷暴等中尺度对流过程有显著的反馈作用,不同陆面参数化方案的使用影响雷暴发生的动力和热力作用,并改变雷暴的时空分布特征。陆面过程通过改变地面热通量输送影响边界层结构,使得水平和垂直方向上的风和温度等发生变化并产生辐合辐散,进而影响对流的启动时间和对流发展强度。由于对不同植被的参数化处理的差异,Noah方案对下垫面特征的描述能力优于RUC方案,尤其是对城市下垫面的处理,这也使得之后该方案模拟的雷暴发生时间更加接近于实况且雷暴过程更加强烈。  相似文献   

3.
改进的CLDAS降水驱动对中国区域积雪模拟的影响评估   总被引:4,自引:3,他引:1  
师春香  张帅  孙帅  姜立鹏  梁晓  贾炳浩  吴捷 《气象》2018,44(8):985-997
积雪因为其特定的属性在气候变化和水文循环中扮演着重要角色,在大气和陆面之间起到了调节能量和水交换的显著作用,而陆面驱动数据的质量直接决定着模式对积雪的模拟效果。本文采用CLDAS(CMA Land Data Assimilation System)和改进后的降水驱动(CLDAS-Prcp)分别驱动Noah3.6陆面模式对积雪变量进行模拟,并对中国主要的积雪区东北区域、新疆区域、青藏高原区域的积雪覆盖率、雪深、雪水当量的模拟效果进行了评估。结果表明,CLDAS-Prcp改善了原有驱动在冬季由于低估降水所造成的模拟积雪量偏少的情况;东北区域模拟结果与观测的时间变率最为一致,积雪覆盖率、雪深、雪水当量的相关系数分别为0.42,0.78,0.93;而雪水当量的改进效果最明显,均方根误差和偏差分别减小了54.8%和83.1%,相关系数提高了0.47;同时,CLDAS-Prcp不仅能反映积雪变量的年际变率,而且能够较准确地反映出强度较大的突发降雪事件。  相似文献   

4.
The presence of light-absorbing aerosols(LAA) in snow profoundly influence the surface energy balance and water budget.However,most snow-process schemes in land-surface and climate models currently do not take this into consideration.To better represent the snow process and to evaluate the impacts of LAA on snow,this study presents an improved snow albedo parameterization in the Snow–Atmosphere–Soil Transfer(SAST) model,which includes the impacts of LAA on snow.Specifically,the Snow,Ice and Aerosol Radiation(SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme.The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot(SASP),Colorado,USA.Results show that the snow albedo and snow depth are better reproduced than those in the original SAST,particularly during the period of snow ablation.Furthermore,the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack,with or without LAA.The LAA particles directly absorb extra solar radiation,which accelerates the growth rate of the snow grain size.Meanwhile,these larger snow particles favor more radiative absorption.The average total radiative forcing of the LAA at the SASP is 47.5Wm~(-2).This extra radiative absorption enhances the snowmelt rate.As a result,the peak runoff time and "snow all gone" day have shifted 18 and 19.5 days earlier,respectively,which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.  相似文献   

5.
The present reported study investigated the persistence of snow anomalies over the Tibetan Plateau(TP) from the preceding seasons to summer and the relationship between the previous snow cover anomaly and summer precipitation over East Asia. The results showed that, relative to other snow indices, such as the station observational snow depth(SOSD) index and the snow water equivalent(SWE) index, the snow cover area proportion(SCAP) index calculated from the SWE and the percentage of visible snow of the Equal-Area Scalable Earth Grids(EASE-grids) dataset has a higher persistence in interannual anomalies, particularly from May to summer. As such, the May SCAP index is significantly related to summer precipitation over the Meiyu-Baiu region. The persistence of the SCAP index can partly explain the season-delayed effect of snow cover over the TP on summer rainfall over the Meiyu-Baiu region besides the contribution of the soil moisture bridge. The preceding SST anomaly in the tropical Indian Ocean and ENSO can persist through the summer and affect the summer precipitation over the Meiyu-Baiu region. However, the May SCAP index is mostly independent of the simultaneous SSTs in the tropical Indian Ocean and the preceding ENSO and may affect the summer precipitation over the Meiyu-Baiu region independent of the effects of the SST anomalies. Therefore, the May SCAP over the TP could be regarded as an important supplementary factor in the forecasting of summer precipitation over the Meiyu-Baiu region.  相似文献   

6.
通过中亚费尔干纳盆地2007~2011年气候的模拟试验,揭示了新增农田灌溉过程与更新土壤参数对WRF(Weather Research and Forecasting)/Noah模式模拟精度的提升作用。通过对比标准版本与嵌入灌溉过程参数化方案后的WRF/Noah模式的模拟结果,研究发现农业灌溉提升了土壤含水量,导致地表蒸发增强,潜热增加,感热减少,致使近地层大气降温、增湿,这一效应降低了WRF/Noah模拟的暖、干偏差,模拟2 m气温和大气比湿均方根误差分别由6.52°C降低至5.81°C,由1.66 g/kg降低至1.13 g/kg。进而针对WRF默认配置的费尔干纳盆地内土壤数据精度欠佳的问题,再利用国际土壤参比与信息中心(ISRIC)数据(主要是粉砂粘壤土和粉砂壤土)替换了WRF默认的数据(主要是粘土和壤土),降低了土壤凋萎系数,使得有效土壤水增多,缩小了灌溉需水量的模拟误差,并使得蒸散发进一步增强,潜热增多,感热减少,导致近地层降温、增湿,进一步降低了WRF/Noah模拟的暖、干偏差,模拟温度、湿度的均方根误差分别由5.81°C降低至5.46°C,由1.13 g/kg降低至1.08 g/kg。上述结果表明:充分农业灌溉对陆面过程产生影响,以及采用高精度的土壤数据能够显著提高WRF/Noah模式在中亚费尔干纳盆地的模拟精度。  相似文献   

7.
Representation of cloud microphysical processes is one of the key aspects of numerical models. An improved doublemoment bulk cloud microphysics scheme(named IMY) was created based on the standard Milbrandt-Yau(MY) scheme in the Weather Research and Forecasting(WRF) model for the East Asian monsoon region(EAMR). In the IMY scheme, the shape parameters of raindrops, snow particles, and cloud droplet size distributions are variables instead of fixed constants.Specifically, the shape parameters of r...  相似文献   

8.
This study investigates the impact of rain snow threshold (RST) temperatures on snow depth simulation using the Community Land Model (CLM) and the Weather Research and Forecasting model (WRF-coupled with the CLM and hereafter referred to as WRF CLM), and the difference in impacts. Simulations were performed from 17 December 1994 to 30 May 1995 in the French Alps. Results showed that both the CLM and the WRF CLM were able to represent a fair simulation of snow depth with actual terrain height and 2.5℃ RST temperature. When six RST methods were applied to the simulation using WRF CLM, the simulated snow depth was the closest to observations using 2.5℃ RST temperature, followed by that with Pipes’, USACE, Kienzle’s, Dai’s, and 0℃ RST temperature methods. In the case of using CLM, simulated snow depth was the closest to the observation with Dai’s method, followed by with USACE, Pipes’, 2.5℃ RST temperature, Kienzle’s, and 0℃ RST temperature method. The snow depth simulation using the WRF CLM was comparatively sensitive to changes in RST temperatures, because the RST temperature was not only the factor to partition snow and rainfall. In addition, the simulated snow related to RST temperature could induce a significant feedback by influencing the meteorological variables forcing the land surface model in WRF CLM. In comparison, the above variables did not change with changes in RST in CLM. Impacts of RST temperatures on snow depth simulation could also be influenced by the patterns of temperature and precipitation, spatial resolution, and input terrain heights.  相似文献   

9.
In this study, the Weather Research and Forecasting (WRF) model version 3.2 is used to examine the impact of precipitating ice and especially snow-graupel partitioning in the simulation of a heavy rainfall event over Chalkidiki peninsula in Northern Greece. This major precipitation event, associated with a case of cyclogenesis over the Aegean Sea, occurred on the 8th of October 2006 causing severe flooding and damage. Two widely used microphysical parameterizations, the Purdue Lin (PLIN) and WRF Single-Moment 6-class scheme (WSM6) are compared with available raingauge measurements over the complex topography of Chalkidiki. To further investigate the importance of snow and graupel relative mass content and the treatment of precipitating ice sedimentation velocity, two older versions of the WSM6 scheme were compiled and run with the current model. The verification results indicate that all simulations were found to match raingauge data more closely over the eastern mountainous Chalkidiki peninsula where maximum accumulations were observed. In other stations all schemes overestimate 24h accumulated rainfall except a station situated at the western part of the peninsula, where none of the simulations was able to reproduce observed rainfall. Graupel dominance in PLIN generates rapid precipitation fallout at the point of maximum predicted 24h accumulation. Similar behavior is shown in WSM6 from WRF version 2, but with significant less rainfall. Increasing snow amounts aloft, due to the unified treatment of precipitating ice in WSM6 from WRF version 3, modifies rain dynamics which decrease rainfall rates, but increases 24h accumulations. A sensitivity experiment where PLIN is used with snow accretion by graupel turned off, indicated that this process seems to be the most important factor controlling the differences in surface precipitation between PLIN and WSM6 from WRF version 3, determining the spatial and temporal distribution of this heavy precipitation event. The results also revealed that snow overestimation can lead to high rainfall accumulations, even though rain is more evenly distributed over the 24h period, deteriorating precipitation forecast.  相似文献   

10.
As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.  相似文献   

11.
利用2017~2018年黄河源地区野外观测站数据,对黄河源区两个积雪期内土壤温湿及冻融特征进行了分析,并与CLM4.5模式模拟的积雪期土壤温、湿度及辐射分量进行了对比,结果表明:CLM4.5能很好地模拟出整个积雪期土壤温度的变化趋势;对不同土壤层在不同冻结阶段土壤含水量的模拟有所差异:在完全冻结阶段,对5cm 土壤层含...  相似文献   

12.
One deficiency of the NCAR Community Land Model (CLM3) is the disappearance of the simulated snow even in the middle of winter over a boreal grassland site due to unrealistically modeled high downward turbulent fluxes. This is caused by the inappropriate treatment of the vertical snow burial fraction for short vegetation. A new snow burial fraction formulation for short vegetation is then proposed and validated using in situ observations. This modification in the CLM3 largely removes the unrealistic surface turbulent fluxes, leading to a more reasonable snowmelt process, and improves the snow water equivalent (SWE) simulation. Moreover, global offline simulations show that the proposed formulation decreases sensible and latent heat fluxes as well as the ground temperature during the snowmelt season over short vegetation dominant regions. Correspondingly, the SWE is enhanced, leading to the increase in snowmelt-induced runoff during the same period. Furthermore, sensitivity tests indicate that these improvements are insensitive to the exact functional form or parameter values in the proposed formulation.  相似文献   

13.
为了改进美国NCARCCM3全球模式中LSM陆面模型中的积雪方案的模拟效果,在Sun等[1]SAST积雪模型的基础上,作了部分修改后,加进CCM3模式LSM模型中.该方案根据格点区域平均积雪深度的不同,把地面雪盖划分为1到3层不等,能在积雪表层和中间层更好地描述温度的日变化和季节变化;较详细地考虑了雪的热传导、太阳辐射的穿透吸收、雪的融化、液态水的储存、渗透和再冻结等积雪内部的主要物理过程;根据Nimbus-7卫星实测雪深资料修改了积雪覆盖度和雪面反照率的计算方案.利用前苏联6个台站1978-1983年的实测积雪资料和大气强迫数据,进行了单点模拟试验,结果表明,新的积雪参数化方案能够较好地再现积雪深度和雪水当量的逐日和季节变化特征,部分提高了积雪参数化方案对积雪的模拟能力.  相似文献   

14.
青藏高原冬春积雪影响亚洲夏季风的研究进展   总被引:3,自引:0,他引:3  
青藏高原积雪作为亚洲夏季降水异常的一个预测因子已有很长历史。统计分析表明,青藏高原冬春积雪与印度夏季降水反相关,与我国长江中下游夏季降水多为正相关,不同作者对此现象给出了一些可能的解释,如地表反照率效应和积雪一水文效应。但积雪的这种跨季节滞后影响的具体物理过程仍有争议。另一方面,青藏高原冬春积雪资料存在不确定性,这对相关物理机制的理解造成了很大困难。通过回顾和梳理前人在该领域的研究成果,提出了高原积雪影响亚洲季风的未来研究方向。  相似文献   

15.
Summary We replace the existing land surface parameterization scheme, the Biosphere-Atmosphere Transfer Scheme (BATS), in a regional climate model (RegCM) with the newly developed Common Land Model (CLM0). The main improvements of CLM0 include a detailed 10-layer soil model, the distinction between soil ice and water phases, a linked photosynthesis-stomatal conductance model, a multilayer snow model, and an improved runoff parameterization. We compare the performance of CLM0 and BATS as coupled to the RegCM in a one year simulation over East Asia. We find that the RegCM/CLM0 improves the winter cold bias present in the RegCM/BATS simulation. With respect to the surface energy balance, lower CLM0 albedos allow the absorption of more solar radiation at the surface. CLM0 tends to simulate higher sensible heat and lower latent heat fluxes than its BATS counterpart. The surface water balance also changes considerably between the two land surface schemes. Compared to BATS, CLM0 precipitation is reduced overall and surface runoff is increased, thereby allowing less water to enter the soil column. Evapotranspiration is lower in CLM0 due to lower ground evaporation, which leads to a wetter surface soil in CLM0 in spite of less precipitation input. However, transpiration is greater in CLM0 than BATS, which has an overall effect of less surface storage during the summertime. Comparison with station observations indicates that CLM0 tends to improve the simulation of root zone soil water content compared to BATS. Another pronounced difference between the two schemes is that CLM0 produces lower snow amounts than BATS because of different snow models and warmer CLM0 temperatures. In this case, BATS snow cover amounts are more in line with observations. Overall, except for the snow amounts, CLM0 appears to improve the RegCM simulation of the surface energy and water budgets compared to BATS.  相似文献   

16.
The Chinese Academy of Meteorological Sciences (CAMS) two-moment bulk microphysics scheme was adopted in this study to investigate the representation of cloud and precipitation processes under different environmental conditions.The scheme predicts the mixing ratio of water vapor as well as the mixing ratios and number concentrations of cloud droplets,rain,ice,snow,and graupel.A new parameterization approach to simulate heterogeneous droplet activation was developed in this scheme.Furthermore,the improved CAMS scheme was coupled with the Weather Research and Forecasting model (WRF v3.1),which made it possible to simulate the microphysics of clouds and precipitation as well as the cloud-aerosol interactions in selected atmospheric condition.The rain event occurring on 27-28 December 2008 in eastern China was simulated using the CAMS scheme and three sophisticated microphysics schemes in the WRF model.Results showed that the simulated 36-h accumulated precipitations were generally agreed with observation data,and the CAMS scheme performed well in the southern area of the nested domain.The radar reflectivity,the averaged precipitation intensity,and the hydrometeor mixing ratios simulated by the CAMS scheme were generally consistent with those from other microphysics schemes.The hydrometeor number concentrations simulated by the CAMS scheme were also close to the experiential values in stratus clouds.The model results suggest that the CAMS scheme performs reasonably well in describing the microphysics of clouds and precipitation in the mesoscale WRF model.  相似文献   

17.
基于2001~2018年中分辨率成像光谱仪(MODIS)探测的白天地面温度(简称MODIS 白天地温)资料,与青藏高原(简称高原)122个气象站点观测的最高气温资料,在年尺度上评估了MODIS 白天地温在高原的适用性,研究了高原五个干湿分区下MODIS 白天地温的海拔依赖型变暖特征,得到以下主要结论:(1)MODIS白天地温能够基本再现观测的最高气温的时空以及海拔依赖型变暖特征;(2)高原整体上,MODIS白天地温存在显著的海拔依赖型变暖特征,平均海拔每增加100 m,其趋势增加0.02°C (10a)?1,且受积雪—反照率反馈主导;(3)干湿分区下,海拔依赖型变暖特征在高原表现为偏湿润地区强于偏干旱地区;季风区强于西风区。海拔依赖型特征强弱:半湿润地区>湿润半湿润地区>半干旱地区>湿润地区>干旱地区。平均海拔每增加100 m,以上区域的地温趋势分别增加0.06,0.03,0.03,0.01,0.01°C (10a)?1。半湿润和湿润半湿润地区年均温在0°C左右,在气候变暖背景下积雪—反照率反馈作用最为强烈,是其海拔依赖型变暖的主导因素;干旱与半干旱地区年均温相对更低,气候变暖程度对积雪影响相对较小,积雪—反照率反馈作用被限制,但仍对上述地区的海拔依赖型变暖起主导作用;而湿润地区的积雪覆盖率的上升可能是由于降雪(固态降水)增加抵消了积雪融化损耗,云辐射、水汽等其他因素主导了其海拔依赖型变暖。  相似文献   

18.
This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR re-analysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979--1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China.  相似文献   

19.
Sea ice formed over shallow Arctic shelves often entrains sediments resuspended from the sea floor. Some of this sediment-laden ice advects offshore into the Transpolar Drift Stream and the Beaufort Gyre of the Arctic Basin. Through the processes of seasonal melting at the top surface, and the freezing of clean ice on the bottom surface, these sediments tend, over time, to concentrate at the top of the ice where they can affect the surface albedo, and thus the absorbed solar radiation, when the ice is snow free. Similarly, wind-blown dust can reduce the albedo of snow. The question that is posed by this study is what is the impact of these sediments on the seasonal variation of sea ice, and how does it then affect climate? Experiments were conducted with a coupled energy balance climate-thermodynamic sea ice model to examine the impact of including sediments in the sea ice alone and in the sea ice and overlying snow. The focus of these experiments was the impact of the radiative and not the thermal properties of the sediments. The results suggest that if sea ice contains a significant amount of sediments which are covered by clean snow, there is only a small impact on the climate system. However, if the snow also contains significant sediments the impact on sea ice thickness and surface air temperature is much more significant.  相似文献   

20.
青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展   总被引:2,自引:0,他引:2  
青藏高原冬春积雪和地表热源的气候效应是青藏高原气候动力学的两个重要内容。大量资料分析和数值试验研究均表明这两个因子对亚洲季风有一定的预测意义,本文对此做了比较系统的回顾和总结,并进一步比较了青藏高原积雪和地表热源影响东亚和南亚夏季降水的异同。结果表明,东亚夏季降水在年际和年代际尺度上均存在"三极型"和"南北反相"型的空间分布特征,高原春季地表热源在年代际和年际尺度上主要影响东亚夏季降水"三极型"模态;在年代际尺度上它是中国东部出现"南涝北旱"格局的重要原因,而高原冬季积雪的作用相反。另一方面,高原冬季积雪在年际和年代际尺度上对印度夏季风降水的预测效果均要优于高原地表热源。无论是空间分布还是时间演变特征,高原冬季积雪与春季地表热源整体上均无统计意义上的显著联系。不断完善高原地面观测网和改进模式在高原地区的模拟性能,将是进一步深入理解高原积雪和地表热源影响亚洲季风物理过程和机制的关键所在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号