首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional ocean carbon cycle model which is a general circulation model coupled with simple biogeochemical processes is used to simulate CO2 uptake by the ocean.The OGCM used is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model(MOM2).The ocean chemistry and a simple ocean biota model are included.Principal variablesare total CO2,alkalinity and phosphate.The vertical profile of POC flux observed by sediment traps is adopted,the rain ratio,a ratio of production rate of calcite against that of POC,and the bio-production efficiency should be 0.06 and 2 per year,separately.The uptake of anthropogenic CO2 by the ocean is studied.Calculated oceanic uptake of anthropogenic CO2 during the 1980s is 2.05×1015g(Pg)per year.The regional distributions of global oceanic CO2 are discussed.  相似文献   

2.
海洋对人为CO2吸收的三维模式研究   总被引:1,自引:0,他引:1  
文中用包含海洋化学过程和一个简单生物过程的三维碳循环模式模拟了海洋对大气CO2的吸收,并分析了碳吸收的纬度分布。模拟工业革命以来海洋对大气CO2的吸收表明:海洋碳吸收再加上大气CO2的增加只占由化石燃料燃烧、森林砍伐和土地利用的变化而释放到大气中的CO2的2/3。1980~1989年期间海洋年平均吸收2.05GtC。海洋人为CO2的吸收有明显的纬度特征。模式计算的海洋CO2的吸收在总量与纬度分布上与观测结果比较相符。  相似文献   

3.
An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.  相似文献   

4.
应用一个嵌套了海洋生物地球化学循环的太平洋环流碳循环模式,分析了1960~2000年太平洋不同海区海气碳通量随时间的变化。模拟结果显示,赤道太平洋为大气CO2的排放区,南、北太平洋(南、北纬15°至模式计算区域南、北边界)为吸收区。3个海区海气碳通量随时间均存在显著的波动,其中赤道太平洋海气碳通量年际波动最显著。3个海区海气碳通量年际波动对气候事件的响应并不一致,在El Niño年赤道太平洋冷舌的强度和总溶解无机碳(DIC)的浓度以及输出生产力均会受到上升流减弱的影响而降低,La Niña年这些海气碳通量控制要素的分布情况则正好相反,但在南北太平洋副热带以及高纬度海区,El Niño和La Niña对这些要素带来的影响却并不一定相反,对输出生产力的影响甚至是一致的。以海表温度(SST)为例考察海气碳通量与物理场之间的关系表明,在赤道太平洋上升流对DIC的影响是控制海气碳通量变化的主要因素,而在其他海区,尤其是副热带海区,由于垂直运动的年际变化较小,且生物生产力水平较低,SST的波动对海气碳通量年际变化的影响更加重要。  相似文献   

5.
Space-borne measurements of atmospheric greenhouse gas concentrations provide global observation constraints for top-down estimates of surface carbon flux.Here,the first estimates of the global distribution of carbon surface fluxes inferred from dry-air CO_2 column (XCO_2) measurements by the Chinese Global Carbon Dioxide Monitoring Scientific Experimental Satellite (Tan Sat) are presented.An ensemble transform Kalman filter (ETKF) data assimilation system coupled with the GEOS-Chem global chemistry transport model is used to optimally fit model simulations with the Tan Sat XCO_2 observations,which were retrieved using the Institute of Atmospheric Physics Carbon dioxide retrieval Algorithm for Satellite remote sensing (IAPCAS).High posterior error reduction (30%–50%) compared with a priori fluxes indicates that assimilating satellite XCO_2 measurements provides highly effective constraints on global carbon flux estimation.Their impacts are also highlighted by significant spatiotemporal shifts in flux patterns over regions critical to the global carbon budget,such as tropical South America and China.An integrated global land carbon net flux of 6.71±0.76 Gt C yr~(-1) over12 months (May 2017–April 2018) is estimated from the Tan Sat XCO_2 data,which is generally consistent with other inversions based on satellite data,such as the JAXA GOSAT and NASA OCO-2 XCO_2 retrievals.However,discrepancies were found in some regional flux estimates,particularly over the Southern Hemisphere,where there may still be uncorrected bias between satellite measurements due to the lack of independent reference observations.The results of this study provide the groundwork for further studies using current or future Tan Sat XCO_2 data together with other surfacebased and space-borne measurements to quantify biosphere–atmosphere carbon exchange.  相似文献   

6.
A two-dimensional model of global atmospheric transport is used to relate estimated air-to-surface exchanges of carbon dioxide (CO2) to spatial and temporal variations of atmospheric CO2 concentrations and isotopic composition. The atmospheric model coupled with models of the biosphere and mixed layer of the ocean describes the gross features of the global carbon cycle. In particular this paper considers the change in isotopic composition due to interreservoir exchanges and thus the potential application and measurement requirements of new isotopic observational programs.A comparison is made between the model-generated CO2 concentration variation and those observed on secular, interannual and seasonal time scales and spatially through the depth of the troposphere and meridionally from pole-to-pole.The relationship between isotopic and concentration variation on a seasonal time-scale is discussed and it is shown how this can be used to quantitatively estimate relative contributions of biospheric and oceanic CO2 exchange. Further, it is shown that the interhemispheric gradient of concentration and isotopic ratio results primarily from the redistribution of fossil fuel CO2. Both isotopic and concentration data indicate that tropical deforestation contributes less than 2 Gt yr-1 of carbon to the atmosphere.The study suggests that changes in the rate of change of the ratio of 13C to 12C in the atmosphere of less than 0.03 yr-1 might be expected if net exchanges with the biosphere are the cause of interannual variations of CO2 concentrations.  相似文献   

7.
The increase of atmospheric CO2 concentrations due to anthropogenic activities is substantially damped by the ocean, whose CO2 uptake is determined by the state of the ocean, which in turn is influenced by climate change. We investigate the mechanisms of the ocean’s carbon uptake within the feedback loop of atmospheric CO2 concentration, climate change and atmosphere/ocean CO2 flux. We evaluate two transient simulations from 1860 until 2100, performed with a version of the Max Planck Institute Earth System Model (MPI-ESM) with the carbon cycle included. In both experiments observed anthropogenic CO2 emissions were prescribed until 2000, followed by the emissions according to the IPCC Scenario A2. In one simulation the radiative forcing of changing atmospheric CO2 is taken into account (coupled), in the other it is suppressed (uncoupled). In both simulations, the oceanic carbon uptake increases from 1 GT C/year in 1960 to 4.5 GT C/year in 2070. Afterwards, this trend weakens in the coupled simulation, leading to a reduced uptake rate of 10% in 2100 compared to the uncoupled simulation. This includes a partial offset due to higher atmospheric CO2 concentrations in the coupled simulation owing to reduced carbon uptake by the terrestrial biosphere. The difference of the oceanic carbon uptake between both simulations is primarily due to partial pressure difference and secondary to solubility changes. These contributions are widely offset by changes of gas transfer velocity due to sea ice melting and wind changes. The major differences appear in the Southern Ocean (?45%) and in the North Atlantic (?30%), related to reduced vertical mixing and North Atlantic meridional overturning circulation, respectively. In the polar areas, sea ice melting induces additional CO2 uptake (+20%).  相似文献   

8.
A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two main GM90 parameters including isopycnal diffusivity and skew (thickness) diffusivity. Sensitivities of the ocean circulation and the redistribution of dissolved anthropogenic CO2 to these two parameters are examined. Two runs estimate the global oceanic anthropogenic CO2 uptake to be 1.64 and 1.73 Pg C yr-1 for the 1990s, and that the global ocean contained 86.8 and 92.7 Pg C of anthropogenic CO2 at the end of 1994, respectively. Both the total inventory and uptake from our model are smaller than the data-based estimates. In this presentation, the vertical distributions of anthropogenic CO2 at three meridional sections are discussed and compared with the available data-based estimates. The inventory in the individual basins is also calculated. Use of large isopycnal diffusivity can generally improve the simulated results, including the exchange flux, the vertical distribution patterns, inventory, storage, etc. In terms of comparison of the vertical distributions and column inventory, we find that the total inventory in the Pacific Ocean obtained from our model is in good agreement with the data-based estimate, but a large difference exists in the Atlantic Ocean, particularly in the South Atlantic. The main reasons are weak vertical mixing and that our model generates small exchange fluxes of anthropogenic CO2 in the Southern Ocean. Improvement in the simulation of the vertical transport and sea ice in the Southern Ocean is important in future work.  相似文献   

9.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

10.
BCC_CSM1.1对10年尺度全球及区域温度的预测研究   总被引:6,自引:3,他引:3  
高峰  辛晓歌  吴统文 《大气科学》2012,36(6):1165-1179
近期10~30年时间尺度的年代际预测是第五次耦合模式国际比较计划(CMIP5)重要内容之一。按照CMIP5试验要求, 国家气候中心利用气候系统模式BCC_CSM1.1完成并提交了年代际试验结果。本文评估了该模式年代际试验对10年尺度全球及区域地表温度的预测能力, 并通过与20世纪历史气候模拟试验的对比分析, 研究模式模拟对海洋初始观测状态的依赖程度。分析结果表明:(1)在有、无海洋初始化条件下, 模式均能模拟出1960~2005年间全球10年平均实测地表温度的变暖趋势, 但在有海洋初始化条件下, 可以明显减小BCC_CSM1.1模式模拟的全球升温趋势, 使得年代际试验比历史试验的结果更接近观测值。这一特点在观测资料相对丰富的南北纬50°以内地区更为显著。(2)在年代际试验预测前期, 通过Nudging方法, 利用SODA再分析海洋温度资料对模式进行初始化, 经过前期8~12月的协调后, 模式预测的第1年南北纬50°范围海洋、陆面的平均地表气温接近于观测值(CRUTEM3, HadSST2)。由于模式初值SODA再分析SST资料与HadSST2观测值存在明显的全球大洋系统暖偏差以及模式本身系统偏差的影响, 年代际试验模拟的地表气温在2~7年之内, 从观测SST状态逐渐恢复到模式系统本身状态。在同组Decadal试验中, 陆面和海洋恢复调整的时间长度几乎一致。(3) 从10年平均气候异常在区域尺度上的预报技巧来看, 有、无海洋初始同化对预测结果影响不大, 高预测技巧区主要分布在南半球印度洋中高纬度、热带西太平洋以及热带大西洋区域。(4)SST变化与下垫面热通量密切相关, 在热带和副热带海洋区域, 长波辐射和感热通量是影响10年时间尺度SST变化较大的物理量, 在中高纬度海洋, 洋面温度变化主要受潜热通量的影响相对较大。  相似文献   

11.
In this paper, we evaluate several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data as input parameters to compute air-sea fluxes from the COARE v3.0 algorithm. Wind speed is corrected for mesoscale gustiness. Surface net shortwave radiation is based on corrected ISCCP data. We extend the shortwave radiation time series by using “near real-time” SWR estimated from outgoing longwave radiation. All products reproduce consistent intraseasonal surface net heat flux variations associated with the Madden-Julian Oscillation in the Indian Ocean, but display more disparate interannual heat flux variations associated with El Ni?o in the eastern Pacific. They also exhibit marked differences in mean values and seasonal cycle. Comparison with global tropical moored buoy array data, I-COADS and fully independent mooring data sets shows that the two NCEP products display lowest correlation to mooring turbulent fluxes and significant biases. ERA-interim data captures well temporal variability, but with significant biases. OAFlux and TropFlux perform best. All products have issues in reproducing observed longwave radiation. Shortwave flux is much better captured by ISCCP data than by any of the re-analyses. Our “near real-time” shortwave radiation performs better than most re-analyses, but tends to underestimate variability over the cold tongues of the Atlantic and Pacific. Compared to independent mooring data, NCEP and NCEP2 net heat fluxes display ~0.78 correlation and >65?W?m?2 rms-difference, ERA-I performs better (~0.86 correlation and ~48?W?m?2) while OAFlux and TropFlux perform best (~0.9 correlation and ~43?W?m?2). TropFlux hence provides a useful option for studying flux variability associated with ocean–atmosphere interactions, oceanic heat budgets and climate fluctuations in the tropics.  相似文献   

12.
通量距平强迫模式比较计划(FAFMIP)是第六次国际耦合模式比较计划(CMIP6)的子计划之一。FAFMIP共设计了5组试验,利用CMIP6中的大气-海洋耦合环流模式(AOGCM)对海表施加动量通量、热通量和淡水通量扰动,旨在研究在CO2强迫下模式模拟的海洋热吸收,由热膨胀引起的全球平均海平面上升,及由海洋密度和环流导致的动力海平面变化等方面的不确定性。  相似文献   

13.
Over the past three decades, the drawdown of atmospheric CO2 in vegetation and soil has fueled net ecosystem production (NEP). Here, a global land-surface model (CABLE) is used to estimate the trend in NEP and its response to atmospheric CO2, climate change, biological nitrogen (N) fixation, and N deposition under future conditions from 2031 to 2100 in the Belt and Road region. The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon (C) yr?2 under present conditions (1936–2005) to ?0.023 Pg C yr?2 under future conditions. In contrast, the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr?2 under present conditions to ?0.009 Pg C yr?2 under future conditions. This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future. The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP. Considering the responses of soil respiration (RH) or net primary production (NPP) to surface air temperature, the trend in surface air temperature changes from0.01°C yr?1 under present conditions to 0.05°C yr?1 under future conditions. CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions, which causes a decreasing trend in NEP. In addition, the greater decreasing trend in NEP under future conditions indicates that the C–climate–N interaction at the regional scale should be considered. It is important to estimate the direction and magnitude of C sinks under the C neutrality target.摘要目前, 在区域尺度, NEP趋势变化的强度和影响机制还存在很大的不确定性. 针对这一问题, 我们选取了一带一路覆盖的区域为研究对象, 基于全球陆面模式 (CABLE)和第六次国际耦合模式比较计划 (CMIP6), 评估了历史和未来NEP趋势的变化, 分析了影响的机制. 从过去到未来, CABLE结果表明NEP的趋势从 0.015 Pg C yr?2 减少到 –0.023 Pg C yr?2; CMIP6结果为从0.014 Pg C yr?2转变为–0.009 Pg C yr?2. 气候变化是引起这一变化的主因. 我们的研究结果强调了碳-气候-氮相互作用的重要性, 这对碳中和目标下碳汇潜力的准确估算尤为重要.  相似文献   

14.
Using a global carbon cycle model (GLOCO) that considers seven terrestrial biomes, surface and deep ocean layers based on the HILDA model and a single mixed atmosphere, we analyzed the response of atmospheric CO2 concentration and oceanic DIC and DOC depth profiles to additions of carbon to the atmosphere and ocean. The rate of transport of carbon to the deepest oceanic layers is rather insensitive to the atmosphereic-ocean surface gas exchange coefficient over a wide range, hence discrepancies between researchers on the precise global average value of this coefficient do not significantly affect predictions of atmospheric response to anthropogenic inputs. Upwelling velocity, on the other hand, amplifies oceanic response by increasing primary production in the upper ocean layers, resulting in a larger flux into DOC and sediments and increased carbon storage; experiments to reduce the uncertainty in this parameter would be valuable.The location of the carbon addition, whether it is released in the atmosphere or in the middle of the oceanic thermocline, has a significant impact on the maximum atmospheric CO2 concentration (pCO2) subsequently reached, suggesting that oceanic burial of a significant fraction of carbon emissions (e.g. via clathrate hydrides) may be an important management option for limiting pCO2 buildup. Our analysis indicates that the effectiveness of ocean burial decreases asymptotically below about 1000 m depth. With a constant emissions scenario (at 1990 levels), pCO2 at year 2100 is reduced from 501 ppmv considering all emissions go to the atmosphere, to 422 ppmv with ocean burial at a depth of 1000 m of 50% of the fossil fuel emissions. An alternative scenario looks at stabilizing pCO2 at 450 ppmv; with no ocean burial of fossil fuel emissions, the rate of emissions has to be cut drastically after the year 2010, whereas oceanic burial of 2 GtC/yr allows for a smoother transition to alternative energy sources.  相似文献   

15.
海洋对人为CO2吸收的三维模式研究   总被引:4,自引:0,他引:4  
文中用包含海洋化学过程和一个简单生物过程的三维碳循环模式模拟了海洋对大气CO2 的吸收 ,并分析了碳吸收的纬度分布。模拟工业革命以来海洋对大气 CO2 的吸收表明 :海洋碳吸收再加上大气 CO2 的增加只占由化石燃料燃烧、森林砍伐和土地利用的变化而释放到大气中的 CO2 的 2 /3。1 980~ 1 989年期间海洋年平均吸收 2 .0 5Gt C。海洋人为 CO2 的吸收有明显的纬度特征。模式计算的海洋 CO2 的吸收在总量与纬度分布上与观测结果比较相符。  相似文献   

16.
Inorganic carbon in the ocean is modelled as a passive tracer advected by a three-dimensional current field computed from a dynamical global ocean circulation model. The carbon exchange between the ocean and atmosphere is determined directly from the (temperature-dependent) chemical interaction rates in the mixed layer, using a standard CO2 flux relation at the air-sea interface. The carbon cycle is closed by coupling the ocean to a one-layer, horizontally diffusive atmosphere. Biological sources and sinks are not included. In this form the ocean carbon model contains essentially no free tuning parameters. The model may be regarded as a reference for interpreting numerical experiments with extended versions of the model including biological processes in the ocean (Bacastow R and Maier-Reimer E in prep.) and on land (Esser G et al in prep.). Qualitatively, the model reproduces the principal features of the observed CO2 distribution bution in the surface ocean. However, the amplitudes of surface pCO2 are underestimated in upwelling regions by a factor of the order of 1.5 due to the missing biological pump. The model without biota may, nevertheless, be applied to compute the storage capacity of the ocean to first order for anthropogenic CO2 emissions. In the linear regime, the response of the model may be represented by an impulse response function which can be approximated by a superposition of exponentials with different amplitudes and time constants. This provides a simple reference for comparison with box models. The largest-amplitude (0.35) exponential has a time constant of 300 years. The effective storage capacity of the oceans is strongly dependent on the time history of the anthropogenic input, as found also in earlier box model studies.  相似文献   

17.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   

18.
Troy Masters 《Climate Dynamics》2014,42(7-8):2173-2181
Climate sensitivity is estimated based on 0–2,000 m ocean heat content and surface temperature observations from the second half of the 20th century and first decade of the 21st century, using a simple energy balance model and the change in the rate of ocean heat uptake to determine the radiative restoration strength over this time period. The relationship between this 30–50 year radiative restoration strength and longer term effective sensitivity is investigated using an ensemble of 32 model configurations from the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting a strong correlation between the two. The mean radiative restoration strength over this period for the CMIP5 members examined is 1.16 Wm?2K?1, compared to 2.05 Wm?2K?1 from the observations. This suggests that temperature in these CMIP5 models may be too sensitive to perturbations in radiative forcing, although this depends on the actual magnitude of the anthropogenic aerosol forcing in the modern period. The potential change in the radiative restoration strength over longer timescales is also considered, resulting in a likely (67 %) range of 1.5–2.9 K for equilibrium climate sensitivity, and a 90 % confidence interval of 1.2–5.1 K.  相似文献   

19.
G. M. Flato 《Climate Dynamics》2004,23(3-4):229-241
The simulation of sea-ice in global climate models participating in the Coupled Model Intercomparison Project (CMIP1 and CMIP2) is analyzed. CMIP1 simulations are of the unpertubed control climate whereas in CMIP2, all models have been forced with the same 1% yr–1 increase in CO2 concentration, starting from a near equilibrium initial condition. These simulations are not intended as forecasts of climate change, but rather provide a means of evaluating the response of current climate models to the same forcing. The difference in modeled response therefore indicates the range (or uncertainty) in model sensitivity to greenhouse gas and other climatic perturbations. The results illustrate a wide range in the ability of climate models to reproduce contemporary sea-ice extent and thickness; however, the errors are not obviously related to the manner in which sea-ice processes are represented in the models (e.g. the inclusion or neglect of sea-ice motion). The implication is that errors in the ocean and atmosphere components of the climate model are at least as important. There is also a large range in the simulated sea-ice response to CO2 change, again with no obvious stratification in terms of model attributes. In contrast to results obtained earlier with a particular model, the CMIP ensemble yields rather mixed results in terms of the dependence of high-latitude warming on sea-ice initial conditions. There is an indication that, in the Arctic, models that produce thick ice in their control integration exhibit less warming than those with thin ice. The opposite tendency appears in the Antarctic (albeit with low statistical significance). There is a tendency for models with more extensive ice coverage in the Southern Hemisphere to exhibit greater Antarctic warming. Results for the Arctic indicate the opposite tendency (though with low statistical significance).A list of the CMIP modeling groups is included in the Acknowledgements section.  相似文献   

20.
The performance of 21 Coupled Model Intercomparison Project Phase 5 (CMIP5) models in the simulation of the Indian Ocean Dipole (IOD) mode is evaluated. Compared to CMIP3, CMIP5 models exhibit a similar spread in IOD intensity. A detailed diagnosis was carried out to understand whether CMIP5 models have shown improvement in their representation of the important dynamical and thermodynamical feedbacks in the tropical Indian Ocean. These include the Bjerknes dynamic air-sea feedback, which includes the equatorial zonal wind response to sea surface temperature (SST) anomaly, the thermocline response to equatorial zonal wind forcing, the ocean subsurface temperature response to the thermocline variations, and the thermodynamic air-sea coupling that includes the wind-evaporation-SST and cloud-radiation-SST feedback. Compared to CMIP3, the CMIP5 ensemble produces a more realistic positive wind-evaporation-SST feedback during the IOD developing phase, while the simulation of Bjerknes dynamic feedback is more unrealistic especially with regard to the wind response to SST forcing and the thermocline response to surface wind forcing. The overall CMIP5 performance in the IOD simulation does not show remarkable improvements compared to CMIP3. It is further noted that the El Niño-Southern Oscillation (ENSO) and IOD amplitudes are closely related, if a model generates a strong ENSO, it is likely that this model also simulates a strong IOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号