首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coexisting, liquid-rich and vapor-rich primary fluid inclusions in quartz provide direct evidence for fluid phase separation in high-grade quartz–roscoelite–gold veins and breccias from the Porgera alkalic-type gold deposit. Vapor-rich fluid inclusions are CO2-rich, and sometimes contain liquid CO2 at room temperature. The close spatial and paragenetic relationship between these “boiling assemblage” fluid inclusions and gold suggests that gold was precipitated by phase separation, at least locally. Additionally, the occurrence of carbonate and sulfate minerals in high-grade veins (reflecting pH increase and oxidation of the boiled fluid) and the appearance of hydrothermal breccias, are consistent with the process of fluid phase separation. Liquid CO2-bearing fluid inclusions are rare in near-surface epithermal deposits, and indicate that the Porgera vein system was formed at greater depths and pressures (our estimates suggest pressures between 250 and 340 bars). It is suggested that alkalic-type gold deposits may be distinguished from other epithermal deposit types by the more gaseous nature of the ore-forming fluids, in addition to their association with alkalic magmas. Received: 24 February 2000 / Accepted: 6 April 2000  相似文献   

2.
Arapucandere is one of a number of similar Cu–Zn–Pb ± Au–Ag epithermal deposits in the Biga Peninsula, which are mineralogically and tectonically similar. Fluid inclusions have very low salinities between 1.7 and 0 wt.% NaCl and a wide range of temperatures from ~ 360 to 160 °C. There was extensive boiling and “flashing” of the hydrothermal fluids which initiated mineral deposition. The range of temperatures is consistent with emplacement of the veins at ~ 700 m depth, with the pressure decreasing from near lithostatic to near hydrostatic and a decrease in temperature to ~ 250 °C due to adiabatic expansion of the fluids. There is evidence of a limited amount of boiling, but the temperature and pressure decrease was close to the liquid–vapour curve. Flashing of the fluids was caused by sudden drops to sub-hydrostatic pressures and even lower temperatures. Mineralization was caused by these pressure related temperature decreases as there is no evidence of cooling and dilution of the ore-fluids. δ34S values of sulphides indicate a magmatic source but the more negative than usual values also suggest boiling affected isotopes. δD and δ18O of the fluids indicate a mixing between meteoric waters and magmatic fluids, with the large range of δD due to boiling. LA-ICP-MS analyses of fluid inclusions reveal high Cu–Zn–Pb concentrations in the fluids, despite their low salinity, transported as chloride complexes. Exceptional pressure and temperature decrease causing the fluids to “flash” was likely to have been in response to earthquakes.  相似文献   

3.
湖南东坡柴山-蛇形坪一带铅锌矿床流体包裹体研究   总被引:2,自引:1,他引:1  
东坡柴山-蛇形坪一带铅锌矿床位于千里山岩体西南侧的远接触带上,由脉状、柱状和席状的铅锌矿体组成,在矿体周围明显发生碳酸盐化和硅化作用。该带矿床中闪锌矿、萤石、石英和方解石内流体包裹体类型主要包括富液相包裹体、富气相包裹体和含子矿物包裹体;其流体包裹体的均一温度范围为140~395℃,在350℃、240~260℃和200~220℃处分别出现峰值,反映该期热液流体在形成脉状、柱状铅锌矿体过程中可能包含了不同的捕获事件,其中方解石内出现的气体包裹体同与其共生的液体包裹体的均一温度相近,两者均一温度范围主要集中在268~395℃,峰值为350℃,液相包裹体w(NaCleq)范围为9%~11%,表明流体发生过气液相分离的沸腾作用;闪锌矿、萤石、石英和方解石中流体包裹体w(NaCleq)范围为0~23%,峰值9%~10%。流体包裹体的均一温度和盐度特征与岩浆热液流体演化到裂隙阶段静水压力条件下的流体相近。闪锌矿中流体包裹体内存在方解石和白云石子矿物,表明铅锌矿的成矿作用发生在富集碳酸盐的热液流体中。千里山花岗岩体晚期释放的流体沿着不同的通道上升,当它冷却到低于400℃,这些地区产生了脆性裂隙,流体沿着裂隙继续上升,并且发生沸腾作用,因此,温度在340~400℃时,w(NaCleq)为7%左右的流体分成了w(NaCleq)约10%的液相流体和w(NaCleq)约0.02%的气相流体,由于温度和压力的迅速降低,成矿物质沿着裂隙和空洞沉淀成矿,形成了东坡矿区的脉状、柱状和席状的铅锌矿体。  相似文献   

4.
Gold deposits in the Taihang Mountains, northern China, mainly consist of quartz sulfide veins in granitoid plutons. This paper describes the geological setting of the gold deposits, and presents the results of microthermometric, Fourier transform infrared spectra, and stable isotope analyses of ore—forming fluids for the purpose of examining the characteristics of these fluids. The ore—forming fluid was of high temperature (up to 380°C) and high salinity (33–41 wt% NaCl equiv.), represented by type I inclusions (with daughter minerals). This fluid evolved to low salinity at low temperatures recorded in type II (liquid-rich) and III inclusions (vapor—rich). Primary type II inclusions coexist with type III inclusions in quartz. Type III inclusions have almost the same homogenization temperatures as type II inclusions. This probably reflects boiling. The secondary fluid inclusions homogenized at lower temperatures, and have lower salinities than primary inclusions. Based on microthermometric data, we propose that the high—temperature fluid that separated from residual magma corresponded to the ore—forming fluid represented by type I inclusions. This fluid mixed with meteoric water in the upper part of the granitic pluton and was diluted. The diluted fluid boiled, probably due to abrupt pressure decrease, and formed liquid—rich type II inclusions and vapor—rich type III inclusions. The deposition of sulfide minerals and gold probably occurred during boiling.  相似文献   

5.
黑龙江乌拉嘎金矿是我国陆相火山岩区的重要金矿之一。构造位置处于古亚洲构造域与滨太平洋构造域交接复合部位的东北缘,矿体主要分布于团结沟斜长花岗斑岩接触带部位的隐爆角砾岩带和黑龙江群变质岩的层间裂隙中。斜长花岗斑岩的石英斑晶中发育3类包裹体:熔体包裹体、原生的L-V包裹体(及少量的L-V-S包裹体)和次生的L-V包裹体。玻璃质熔体包裹体相当于酸性殘浆的成分(SiO2达69.5%~73.8%),其捕获温度大于800℃。石英斑晶中次生L-V包裹体均一温度集中在210~350℃、盐度5%~7%NaCleqv,代表了次火山岩浆热液的特征,与黄铁矿-早期白色玉髓状石英阶段中Q1的包裹体均一温度范围很接近,而盐度略高于白色玉髓状石英Q1的。乌拉嘎金矿的金成矿可划分3个成矿阶段,发育盐水溶液包裹体:(1)黄铁矿-早期白色玉髓状石英阶段,包裹体均一温度为154~355℃,集中在190~330℃,盐度为1.3%~8.2%NaCleqv,密度为0.53~0.88g/cm3。(2)烟灰色玉髓状石英-多金属硫化物阶段,石英中包裹体均一温度为159~196℃,集中在170~190℃,盐度为2.2%~3.2%NaCleqv,密度0.79~0.92g/cm3。(3)碳酸盐-石英阶段,方解石中包裹体均一温度集中在170~270℃;盐度0.5%~2.9%NaCleqv。成矿流体以中低温、低盐度、贫CO2的盐水体系为特征,与国内外陆相火山-次火山热液矿床十分相似。石英斑晶中熔体、流体包裹体及其共存反映了次火山岩浆活动晚期,由硅酸盐熔体通过不混溶产生含矿的盐水溶液的可能,说明了金成矿与斑岩的成因联系,乌拉嘎金矿应该属于陆相火山-次火山活动有关的中低温浅成热液金矿床。  相似文献   

6.
一些文献列举了新疆阿希和石英滩金矿床群体包裹体成分分析结果,其阳离子中Na^ /K^ 比值(原子比)<l,并存在大量过剩阳离子等与矿床地质特征相悖的特点。文章利用群体包裹体分析方法,对阿希金矿含金石英脉进行了专门的实验,结果证实上述分析结果与分析样品不纯和非包裹体来源的污染有关。文中还讨论了有关包裹体成分分析和结果应用中值得注意的一些问题。  相似文献   

7.
杜荒岭和九三沟矿床是延边地区两个典型的浅成热液高硫化型金矿床,两者距离不足10km。本文运用显微测温、激光拉曼成分测试和稀有气体同位素对这两个矿床的蚀变岩和矿石中的石英内流体包裹体进行研究,以便揭示成矿流体的起源和演化过程。测温及拉曼测试结果表明:蚀变早期矿化阶段主要气体成分为CO_2、N_2的两相流体包裹体,发育少量高盐度(33.4%~48.1%)高温(410~470℃)的流体包裹体,其为深部斑岩成矿系统与后期浅成矿化流体叠加的产物;主成矿阶段均一温度为90~330℃,盐度为0.4%~44.9%,成分以H2O为主,含少量的CO_2;富气相、富液相及含石盐子晶多相的流体包裹体共存,表明流体发生了沸腾作用,这些流体包裹体被捕获的深度为100~500 m,代表浅成矿化的主要流体。稀有气体同位素结果表明:3 He/4 He值为0.009 6~0.020 6Ra,20 Ne/22 Ne、21 Ne/22 Ne值分别为9.734~9.987和0.030 9~0.040 6,40 Ar/36 Ar为1 302.4~4 433.6。上述研究结果表明,延边地区杜荒岭和九三沟金矿早期成矿流体为携带Au、Ag、Cu等成矿元素的高温、高氧化的岩浆气,主成矿阶段地壳流体的混入导致沸腾作用,晚期转以低温低盐度的大气水为主。  相似文献   

8.
Theoretical, experimental and observation data provide strong evidence that boiling is the dominant depositional mechanism in many low to intermediate sulfidation epithermal precious metals deposits. Textural and petrographic features that are evidence for boiling in the epithermal environment include the presence of coexisting liquid-rich and vapor-rich fluid inclusions, assemblages consisting of only vapor-rich fluid inclusions, colloform quartz, adularia and bladed calcite. We have examined 213 samples collected from surface outcrops, underground workings and drill cores from the central part of the La Luz vein system in the Guanajuato mining district, Mexico. In each sample, the various features that are evidence of boiling have been recorded. These observations have been quantified using a Boiling Confidence Factor that provides a means of scoring and rating each sample or area relative to the likelihood that boiling occurred.Homogenization temperatures of liquid-rich fluid inclusions within assemblages of coexisting liquid-rich and vapor-rich fluid inclusions have been measured to estimate the depth of trapping of the inclusions, and these data have been used to estimate the depth to the 300 °C isotherm along the La Luz vein system.Fluid inclusions and mineral textural features show strong evidence of boiling in the deepest levels sampled in the La Luz system. This observation suggests that the bottom of the boiling zone is at some depth beneath the deepest levels explored and opens the potential for additional resources at depth.  相似文献   

9.
ABSTRACT Despite the close association with volcanic activity, the source of metals and ligands in the epithermal ore deposits is still controversial. In order to explore the magmatic–hydrothermal connection further, silicate melt, saline- and water-rich fluids, and CO2 vapours are documented that are trapped as inclusions in quartz phenocrysts from dacitic dykes associated with epithermal gold/base metal mineralization in the Shila district (Peru). Melt inclusion characteristics, and microthermometric and laser Raman fluid inclusion data are presented. The investigation of melt and fluid inclusions reveals that the volatile phase of magmas might represent the precursors to the early chlorine-rich ore-forming epithermal solutions. Microthermometric investigations in magmatic quartz crystals and data on quartz mineralized veins suggest that the fluid evolution and ore deposition may be the result of several processes including: release of an evolving magmatic fluid, and/or boiling, and/or mixing.  相似文献   

10.
韩龙 《地质与勘探》2017,53(3):445-455
偃尾山铜银矿床是大兴安岭北段呼中-塔源成矿带内新发现的中小型矿床。矿床围岩蚀变呈面状分布,主要蚀变类型为硅化、碳酸盐化、黄铁矿化、伊利石化、高岭石化和绢云母化。热液成矿期可分为三个阶段:成矿早期石英-黄铁矿阶段(含少量黄铜矿)、主成矿期石英-斑铜矿-黄铜矿-辉铜矿(含铜硫化物)阶段和成矿晚期石英-碳酸盐-萤石阶段(含少量方铅矿和闪锌矿)。该矿床流体包裹体主要为富液相包裹体,也有少量纯气相包裹体,未见含子矿物包裹体。主成矿阶段流体包裹体均一温度为155℃~342℃,峰值集中在160℃~230℃,冰点温度在﹣3.3℃~﹣0.3℃,盐度为0.53%NaC_(leqv)~5.41%Na Cleqv;流体成分以K~+、Na~+、SO_4~(2-)为主,含少量Ca~(2+)和Cl~-,气相成分以H_2O为主,含少量的CO_2;流体δ~(18)O在-11.8‰~-13.72‰之间,δD变化范围在-105‰~-137‰之间。总体上,成矿流体为低温低盐度流体,流体来源主要是大气降水,成矿流体和矿床蚀变-矿化特征显示本矿床可能为高硫型浅成低温热液矿床。流体压力的突然降低可能是成矿物质沉淀的主要机制。偃尾山矿床可能代表了区域上同时代一种新的矿床类型,后续深入研究将有助于认识该区域成矿规律和找矿方向。  相似文献   

11.
陈文明 《地学前缘》2001,8(4):409-421
通过中国几个主要斑岩铜矿含矿斑岩体中斑晶结构及斑晶中流体包裹体的详细研究得出 :斑岩体中的斑晶具明显的包含、筛状、间隙、聚合及次生加大等变斑晶结构。斑晶 (石英 )中流体包裹体具有饱和及过饱和盐水蒸气沸腾流体包裹体组合的特征 ,缺乏熔融包裹体。该沸腾流体包裹体组合(全岩 )中过饱和盐水包裹体占 2 9% ,饱和盐水包裹体占 2 % ,不饱和盐水包裹体占 4 5 % ,气相包裹体占 2 4 %。根据饱和盐水包裹体的均一温度确定斑晶的形成温度区间为 3 11~ 4 0 7℃。流体包裹体的成分主要为H2 O ,CO2 ,K+,Na+,Cl-,SO2 -4等 ,从而进一步论证了斑岩铜矿中含矿斑岩体并非岩浆直接结晶的产物 ,而很可能是由深部富K ,Na ,Si的热流体交代或局部熔融上部含Cu硅酸盐地壳的结果。  相似文献   

12.
The first data on study of individual fluid inclusions in the Zhilnoye deposit have been obtained. It has been found that the gold-bearing quartz veins of the deposit were formed by heterogeneous hydrothermal fluids with low salt concentrations (0.2–3.6 wt% equiv. NaCl under intermediate temperature conditions of 246–350°C). The fluid pressure was 80–160 bar corresponding to 0.3–0.6 km depths of formation under hydrostatic conditions. The parameters of the mineral-forming fluids of the Zhilnoye deposit correspond to typical parameters of the fluids of epithermal deposits.  相似文献   

13.
云南毛坪铅锌(银、锗)矿床是川滇黔成矿域滇东北地区以碳酸盐岩为主岩的中-大型铅锌(银)矿床的典型代表。矿体空间分布严格受NE向层间断裂带和猫猫山倒转背斜的控制。主要脉石矿物(铁方解石、方解石及白云岩)中的流体包裹体发育,一般较小(3~15μm),主要为纯液相和液相包裹体,常沿矿物结晶面密集成群展布。成矿流体属Na^+-K^+-Ca^2+-Cl^--F^-型,流体包裹体均一温度为180—218℃,盐度为4.1wt%-9.5wt%NaCl,成矿压力为406×10^5~570×10^5Pa。在主要脉石矿物流体包裹体中,Na^+/K^+(1.54~4.53)与Cl^-/F^-(0.72~156.33)较高,而重晶石流体包裹体中Na+/K^+(0.32~8.36)与Cl^-/F^-(1、06~16.77)较低。成矿流体的(D为-23‰~-64‰,方铅矿、闪锌矿和黄铁矿中流体包体(^18OV-SMOW依次为0、3‰~6.2‰,-9.0‰-3.4‰和-6.8‰~-12.7‰。脉石矿物的(^13CV-PDB为~1.1‰~-3.7‰。以上信息更好地揭示了成矿流体是变质水、岩浆水和建造水混合的产物,它们与沉积作用、昆阳群基底的变质作用及岩浆热液作用有关。该矿床本身可能是富含铅、锌、银等成矿流体对流循环沿构造“贯入”而成。该矿床不同于典型的MVT型铅锌矿床,是一碳酸盐岩为主岩的铅锌多金属硫化物矿床。  相似文献   

14.
A low-salinity, mixed aqueous-carbonic fluid is common to all Archæan lode-gold deposits throughout the range of mineralising conditions from sub-greenschist to lower-granulite facies temperatures. Alteration assemblages and fluid-inclusion data give constraints on the fluid composition. Fluid XCO 2 is 0.1–0.3 in typical greenschist-facies (mesothermal) deposits. At higher temperatures, the assemblages are consistent with formation from a fluid of similar composition, but slightly higher or lower XCO 2 cannot be ruled out, and fluid-inclusion data indicate that CH4 may be an important component in ore fluids at these temperatures. Fluid pH is neutral or weakly alkaline at all conditions. A range of relative oxidation states of four orders of magnitude fO 2 is indicated at any temperature, with deposits more oxidising relative to QFM at lower temperature. Sulphur contents of the fluids vary from ≈ 10 to 10?3.5m∑S, with a trend towards lower sulphur contents at lower temperatures. The relative concentrations of major cations in solution are similar at all conditions with Na ? K ≥ Ca, although Ca may be less abundant at low temperatures. The broad similarities in ore-fluid composition at all temperatures give support to ‘crustal-continuum’ models, in which Archæan lode-gold mineralisation involved either a single fluid moving through the middle and upper crust, or derivation of ore fluids by similar processes at different crustal levels. Many of the compositional differences between high- and lowtemperature ore-fluids may be attributed to evolution of deep-sourced hydrothermal solutions as they rise along structurally-controlled conduits. The constancy of major ore-fluid component concentration (e.g. CO2, Cl, ± K) suggests fluid-buffering and high fluid-rock ratios along fluid pathways. Fluid-buffered conditions can also explain the ore-fluid fO 2-temperature relations; with equilibria between oxidised and reduced aqueous carbon or sulphur species controlling the oxidation state. In contrast, the concentrations of components present in lesser abundance in Archæan gold ore-fluids (e.g. S, Ca, H+) were probably controlled either by saturation of one or more mineral phases brought on by decreasing temperature, or were rock-buffered through fluid-rock reactions. Extrapolation to high temperatures of the K, Na and Ca contents of the gold-bearing fluids indicates that their composition is consistent with derivation from, or final equilibration with, rocks of intermediate-granitic composition, thus giving support to isotopic and geological arguments for ore-fluid source regions external to the greenstone belts. The fluid oxidation states are characteristic of a wide range of potential source rocks, including mantle-derived igneous rocks, calc-alkaline granitoids and magmas, and seaflooraltered metabasalts. Strongly oxidised magmatic sources or unusually oxidising source processes (e.g. CO2-streaming during granulitisation of the lower crust) are therefore not required in the genesis of Arch?an lode-gold deposits.  相似文献   

15.
Information from a database, which was compiled and continuously updated by the authors of this paper and now includes information from 19500 publication on fluid and melt inclusions in minerals, is used to summarize results on the physicochemical formation parameters of hydrothermal Au, Ag, Pb, and Zn deposits. The database provides information on fluid inclusions in minerals from 970 Pb-Zn, 220 Au-Ag-Pb-Zn, and 825 Au-Ag deposits in various settings worldwide. Histograms for the homogenization temperatures of fluid inclusion are presented for the most typical minerals of the deposits. In sphalerite, most homogenization temperatures (1327 measurements) of fluid inclusions lie within the range of 50–200°C with a maximum at 100–200°C for this mineral from Pb-Zn deposits and within the range of 100–350°C (802 measurements) with a maximum at 200–300°C for this mineral from Au deposits. Data are presented on fluid pressures at Au (1495 measurements) and Pb-Zn (180 measurements) deposits. The pressure during the preore, ore-forming, and postore stages at these deposits ranged from 4–10 to 6000 bar. The reason for the high pressures during preore stages at the deposits is the relations of the fluids to acid magmatic and metamorphic processes. More than 70% of the fluid pressures values measured at Pb-Zn deposits lie within the range of 1–1500 bar. Au-Ag deposits are characterized by higher fluid pressures of 500–2000 bar (61% of the measurements). The overall ranges of the salinity and temperature of the mineral-forming fluid at Au-Ag (6778 measurements) and Pb-Zn (3395 measurements) deposits are 0.1–80 wt % equiv. NaCl and 20–800°C. Most measurements (~64%) for Au-Ag deposits yield fluid salinity <10 wt % equiv. NaCl and temperatures of 200–400°C (63%). Fluids at Pb-Zn deposits are typically more saline (10–25 wt % equiv. NaCl, 51% measurements) and lower temperature (100–300°C, 74% measurements). Several measurements of the fluid density fall within the range of 0.8–1.2 g/cm3. The average composition of volatile components of the fluids was evaluated by various techniques. The average composition of volatile components of fluid inclusions in minerals is calculated for hydrothermal W, Au, Ag, Sn, and Pb-Zn deposits, metamorphic rocks, and all geological objects. The Au, Ag, Pb, and Zn concentrations in magmatic melts and mineral-forming fluids is evaluated based on analyses of individual inclusions.  相似文献   

16.
The Koru and Tesbihdere mining districts in Biga Peninsula, Northwestern Turkey, consist of twelve deposits covering approximately 12 km2. The epithermal Au-Ag enriched base metal veins and associated low-grade breccia and stockwork at Koru and Tesbihdere are hosted by Oligocene subaerial and calc-alkaline volcanic rocks including basaltic andesite lavas, dacitic lava-tuffs, rhyolitic lava-domes and tuffs. NW- to N-trending strike-slip faults and E- and NE-trending faults constitute the most important ore-controlling structures in the Koru and Tesbihdere districts respectively. In the Koru mining district, galena is the dominant ore mineral in barite-quartz veins containing sphalerite, chalcopyrite, pyrite, bornite, enargite and tennantite. According to base metal content, the Tesbihdere mining district can be subdivided into sphalerite-galena dominated Tesbihdere mineralization and chalcopyrite-pyrite dominated Bakır and Kuyu Zones mineralization. Gold is present in small quantities with maximum 3.14 g/t Au values either as free grains in quartz or as micro inclusions in pyrite and galena. The most widespread silver minerals are polybasite, pearceite, argentite and native silver which commonly occur as replacements of galena, sphalerite and pyrite, and other sulfides, or as fillings of microfractures in sulfides and quartz.Microthermometric measurements of primary liquid-rich fluid inclusions in sphalerite, barite and quartz in Koru indicate that the veins were formed at temperatures between 407 and 146 °C from fluids with salinities between 0.7 and 12.5 wt.% equiv. NaCl. Barite from the Tahtalıkuyu, Kuyutaşı and 5th Viraj mineralization show the highest homogenization temperatures. Fluid inclusion data for ore-stage quartz and sphalerite from the Tesbihdere mining district, indicate that these minerals were deposited at temperatures between 387 and 232 °C from more diluted fluids with moderate salinities between 0.2 and 10.6 wt.% NaCl equiv. Tahtalıkuyu and 5th Viraj mineralization show only boiling trends while Kuyutaşı, Tesbihdere, Bakır and Kuyu Zones mineralization show both boiling and isothermal mixing trends. The O and H isotope compositions of ore fluids from the Tahtalıkuyu (δ18O =  1.40 to 0.25‰; δD =  72.49 to − 52.68‰) and Kuyutaşı (δ18O =  2.29 to 3.59‰; δD =  90.70 to − 70.93‰) mineralization indicate that there was a major contribution from a magmatic component to ore genesis. Based on 9 quartz samples associated with orebodies at the Tesbihdere mining district, the relatively higher δ18O and lower δD isotope compositions from hydrothermal fluids could be attributed to a relatively dilute fluid derived by the mixing with meteoric water. The Pb isotope compositions also reveal that most of the lead in both mining districts is derived from the Oligocene-Miocene magmatic rocks, possibly with smaller contributions from the Eocene magmatic rocks.  相似文献   

17.
Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of major ore deposits in the study district have been obtained by the authors through systematic observation and determination of characteristics and phase changes of fluid inclusions at different temperatures and analysis of gaseous and liquid phase compositions of the inclusions, thus providing a scientific basis for the division of mineralization-alteration stages, types of mineral deposits and minerogenetic series and the deepening of the knowledge about the ore-forming processes and mechanisms of mineral deposits. It is indicated that the deposits of the same type have similar fluid inclusion geochemical features and physicochemical parameters though they belong to different minerogenetic series, while the compositions of inclusions are not conditioned by deposit types but closely related to  相似文献   

18.
对金沙江–红河富碱侵入岩带内的玉龙、北衙、铜厂–长安冲三个斑岩型铜、金矿床的流体包裹体进行了详细研究。三个矿床成矿阶段的流体包裹体类型主要有H_2O-NaCl气液两相包裹体,含钠盐、钾盐/方解石、金属子晶多相包裹体以及H_2O-CO_2包裹体。成矿期流体均一温度多在250~500℃之间,高者可达650℃及以上,盐度多在10%~50%NaCleq之间,成矿流体都具有高温、高盐度、富K、富CO_2的特点,显示典型的岩浆热液特征。并且,单个流体包裹体的成分分析也显示流体中除含有较高的成矿元素Cu、Mo、Pb、Zn等外,还含较高的K、Rb、Sr等元素,进一步证明成矿流体源自岩浆分异流体,且经历过从高温高盐度到高温中低盐度的演化。结合该区流体包裹体中广泛存在沸腾包裹体群的事实,进一步证实沸腾作用在斑岩型矿床中的普遍存在,并且说明其很可能是这些矿床金属元素沉淀的重要机制。  相似文献   

19.
海沟金矿流体包裹体为3种类型:富CO2三相、气液两相和纯气相。流体盐度集中在7.44%~8.67%NaCleqv,8.54%~8.94%NaCleqv和9.84%~10.87%NaCleqv三个区间;流体密度为0.54~0.88 g/cm3;成矿温度主要集中在298.4℃~313.5℃和258.2℃~264.6℃。研究表明成矿早期阶段流体为低盐度、富CO2的高温流体,且富CO2型和富气相包裹体共存。成矿中晚期阶段流体盐度和温度明显降低,CO2、H2O等气体能够大量逃逸,流体体系由封闭状态转化为较开放状态,大气降水、层间水等大量进入与岩浆流体发生混合,并引起流体内金络合物的溶解度减小而直接导致金和金属矿物的沉淀和富集。成矿压力范围为110~146 MPa,成矿深度为8.7~10.1 km。通过与典型的造山型金矿特征对比,该矿床成因类型为中成造山型金矿,动力学背景为早一中侏罗世华北板块与西伯利亚板块碰撞的持续汇聚力和古太平洋板块俯冲欧亚大陆的作用力引起的远程效应联合作用的结果。  相似文献   

20.
新疆中天山地区热水沉积形成的马鞍桥铅锌矿床在成矿后期形成了穿插早期层状、似层状矿体的脉状紫色萤石-闪锌矿矿石。紫色萤石和闪锌矿中气液相L-V型流体包裹体的均一温度呈双峰式分布, 主要分布在140℃~260℃和260℃~442℃两个区间内, 且有少量高于470℃的流体包裹体存在, 指示其成矿流体由中高温和低温两个端员组成。同时, 测得脉状矿石的成矿流体盐度为1.91 ~6.30 Wt% (NaCl) 和11.93~21.82 Wt% (NaCl) 。激光Raman光谱分析显示紫色萤石中气液相L-V型流体包裹体的气相组分主要为CH4、C2H6和C3H8等低分子烷烃及少量的H2S和N2 , 指示形成这种脉状矿石的热液由中高温的岩浆气液与低温、高盐度的油田热卤水混合而成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号