首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 10 MeV(I_(10)), E 30 MeV(I_(30)) and E 50 MeV(I_(50)) protons and soft X-ray(SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0–W39, W40–W70(hereafter the well connected region) and W71–W90 have been calculated.Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I_(10), I_(30) and I_(50) are0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I_(10), I_(30) and I_(50) are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I_(10), but SXR peak flux makes no additional contribution. For E 30 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I_(30), and the CME shock makes a small contribution to I_(30), but SXR peak flux makes no additional contribution. For E 50 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I_(50), but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected region, a CME shock is only an effective accelerator for E 30 MeV protons. However, flares are not only effective accelerators for E 30 MeV protons, but also for E 30 MeV protons, and E 30 MeV protons may be mainly accelerated by concurrent flares.  相似文献   

2.
A detailed investigation on geoeffective CMEs associated with meter to Deca-Hectometer (herein after m- and DH-type-II) wavelengths range type-II radio bursts observed during the period 1997–2005 is presented. The study consists of three steps: i) the characteristics of m-and DH-type-II bursts associated with flares and geoeffective CMEs; ii) characteristics of geo and non-geoeffective radio-loud and quiet CMEs, iii) the relationships between the geoeffective CMEs and flares properties. Interestingly, we found that 92 % of DH-type-II bursts are extension of m-type-II burst which are associated with faster and wider geoeffective DH-CMEs and also associated with longer/stronger flares. The geoeffective CME-associated m-type-II bursts have higher starting frequency, lower ending frequency and larger bandwidth compared to the general population of m-type-II bursts. The geoeffective CME-associated DH-type-II bursts have longer duration (P?1 %), lower ending frequency (P=2 %) and lower drift rates (P=2 %) than that of DH-type-IIs associated with non-geoeffective CMEs. The differences in mean speed of geoeffective DH-CMEs and non-geoeffective DH-CMEs (1327 km?s?1 and 1191 km?s?1, respectively) is statistically insignificant (P=20 %).However, the mean difference in width (339° and 251°, respectively) is high statistical significant (P=0.8 %). The geo-effective general populations of LASCO CMEs speeds (545 km?s?1 and 450 km?s?1, respectively) and widths (252° and 60°, respectively) is higher than the non geo-effective general populations of LASCO CMEs (P=3 % and P=0.02 %, respectively). The geoeffective CMEs associated flares have longer duration, and strong flares than non-geoeffective DH-CMEs associated flares (P=0.8 % and P=1 %, respectively). We have found a good correlation between the geo-effective flare and DH-CMEs properties: i) CMEs speed—acceleration (R=?0.78, where R is a linear correlation coefficient), ii) acceleration—flare peak flux (R=?0.73) and, iii) acceleration—Dst index intensity (R=0.75). The radio-rich CMEs (DH-CMEs) produced more energetic storm than the radio-quiet CMEs (general populations of LASCO CMEs). The above results indicate that the DH-type-II bursts tend to be related with flares and geoeffective CMEs, although there is no physical explanation for the result. If the DH-type-II burst is a continuation of m-type-II burst, it could be a good indicator of geoeffective storms, which has important implications for space weather studies.  相似文献   

3.
4.
We present the study of 20 solar flares observed by “Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented. We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.  相似文献   

5.
Kalaivani  P. Pappa  Prakash  O.  Shanmugaraju  A.  Feng  Li  Lu  Lei  Gan  Weigun  Michalek  G. 《Astrophysics》2021,64(3):327-344
Astrophysics - We analyze radio bursts observed in events with interacting/non-interacting CMEs that produced major SEPs (Ip &gt; 10 MeV) from April 1997 to December 2014. We compare properties...  相似文献   

6.
We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts–flares–CMEs) observed during the period 1997–2012. The present analysis consider only the type II bursts having starting frequency \(< 14~\mbox{MHz}\) to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (\(m\)) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as \(m= 1 \mbox{ to } 10\) and \(m = 1 \mbox{ to } 3\). This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.  相似文献   

7.
A detailed analysis of characteristics of coronal mass ejections and flares associated with deca-hectometer wavelength type-II radio bursts (DH-CMEs and DH-flares) observed in the period 1997–2008 is presented. A sample of 62 limb events is divided into two populations known as after-flare CMEs (AF-CMEs) and before-flare CMEs (BF-CMEs) based on the relative timing of the flare and CME onsets. On average, AF-CMEs (1589 km s−1) have more speed than the BF-CMEs (1226 km s−1) and the difference between mean values are highly significant (P∼2%). The average CME nose height at the time of type-II start is at larger distance for AF-CMEs than the BF-CMEs (4.89 and 3.84 R o, respectively). We found a good anti-correlation for accelerating (R a=−0.89) and decelerating (R d=−0.78) AF-CMEs. In the case of decelerating BF-CMEs, the correlation seems to be similar to that for decelerating AF-CMEs (R d=−0.83). The number of decelerating AF-CMEs is 51% only; where as, the number of decelerating BF-CMEs is 83%. The flares associated with BF-CMEs have shorter rise and decay times than flares related to AF-CMEs. We found statistically significant differences between the two sets of associated DH-type-II bursts characteristics: starting frequency (P∼4%), drift rate (P∼1%), and ending frequency (P∼6%). The delay time analysis of DH-type-II start and flare onset times shows that the time lags are longer in AF-CME events than in BF-CME events (P≪1%). From the above results, the AF-CMEs which are associated with DH-type-II bursts are found to be more energetic, associated with long duration flares and DH-type-IIs of lower ending frequencies.  相似文献   

8.
Hua  X M.  Lingenfelter  R. E. 《Solar physics》1987,113(1-2):229-235
Solar Physics - We briefly describe our recent Monte Carlo calculations of the energy and angular distributions of neutrons escaping from the solar atmosphere. Comparing the calculation results...  相似文献   

9.
We briefly describe our recent Monte Carlo calculations of the energy and angular distributions of neutrons escaping from the solar atmosphere. Comparing the calculation results with measurements of the neutron flux from the flares, we determined the angular distribution and energy spectrum of the accelerated ions. We also describe our calculations of the time dependence of the 2.223 MeV line emission, which provide a sensitive measure of the photospheric 3He abundance. We find that the SMM measurements of the time dependence of the 2.2 MeV line emission from the flare of 1982 June 3 imply a 3He/H ratio of (2.3±1.2)×10–5 at the 90% confidence level.  相似文献   

10.
This work includes a study of some properties such as speed, apparent width, acceleration and latitudes, etc. of all types of Prominence Eruptions (PEs) and the associated Coronal Mass Ejections (CMEs) observed during the period of 1997–2006 by Nobeyama Radioheliograph (NORH) and SOHO/LASCO covering the solar cycle 23. The average speed of prominences and associated CMEs are 51 km/sec and 559 km/sec, respectively. The average angular width is 32° and 74°, respectively. As expected the associated CMEs are relatively faster and wider than the prominences.  相似文献   

11.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2001,203(1):165-178
An analysis of the LASCO/SOHO data has shown that blobs are similar, in their basic characteristics, to CMEs, having a relatively small size and relatively low velocities. The formation of blobs and CMEs is usually accompanied by the process where a separate ray (or rays) of the streamer belt becomes occupied by additional anti-sunward traveling plasma of increased density. Generally the size of a CME in the plane of the streamer belt can exceed the CME size in the direction normal to the belt. Conceivably the formation mechanism of CMEs and their energetics might be associated with the energy of additional anti-sunward traveling plasma. This should be taken into account when constructing theoretical models of CMEs.  相似文献   

12.
We report an unusual case of a two-ribbon flare associated with an umbral brightening in a magnetically unipolar region.  相似文献   

13.
In the present paper we report on the difference in angular sizes between radio-loud and radio-quiet CMEs. For this purpose we compiled these two samples of events using Wind/WAVES and SOHO/LASCO observations obtained during 1996 – 2005. We show that the radio-loud CMEs are almost twice as wide as the radio-quiet CMEs (considering expanding parts of CMEs). Furthermore, we show that the radio-quiet CMEs have a narrow expanding bright part with a large extended diffusive structure. These results were obtained by measuring the CME widths in three different ways.  相似文献   

14.
We observed 4B/X17.2 flare in Hα from super-active region NOAA 10486 at ARIES, Nainital. This is one of the largest flares of current solar cycle 23, which occurred near the Sun’s center and produced extremely energetic emission almost at all wavelengths from γ-ray to radio-waves. The flare is associated with a bright/fast full-halo earth directed CME, strong type II, type III and type IV radio bursts, an intense proton event and GLE. This flare is well observed by SOHO, RHESSI and TRACE. Our Hα observations show the stretching/de-twisting and eruption of helically twisted S shaped (sigmoid) filament in the south-west direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare shows almost similar evolution in Hα, EUV and UV. We measure the speed of Hα ribbon separation and the mean value is ∼ 70 km s-1. This is used together with photospheric magnetic field to infer a magnetic reconnection rate at three HXR sources at the flare maximum. In this paper, we also discuss the energetics of active region filament, flare and associated CME.  相似文献   

15.
When coronal mass ejections (CMEs) interact with the solar corona and the interplanetary medium, emissions at different wavelengths occur. On the basis of study of the various radiation mechanisms of space plasma in the case of absence of CMEs, the radio radiation mechanisms of the plasma close to the Lagrange point L1 and affected by large CMEs from February to August 1999 are statistically analyzed. As shown by the results, the main radiation mechanisms are the Bremsstrahlung, a small amount of cyclotron radiation and a still weaker recombination radiation. Also, solar microwave bursts which are associated with CMEs in the same period are investigated. The results show that the microwave bursts are of the gradual type as well as spike bursts, and that the chief radiation mechanisms are the Bremsstrahlung, cyclotron resonance radiation, plasma radiation and electronic cyclotron maser radiation.  相似文献   

16.
E. L. Chupp 《Solar physics》1988,118(1-2):137-154
We review the current observational knowledge on the production of neutrons in association with solar flares. From a study of the observations it is shown that unique information can be obtained on the spectral properties of accelerated ions produced during the flare. Also, the abundance of 3He/H in the photosphere can be directly determined. We also review the current interpretations of all available neutron observations and in particular highlight the uncertainties, and provide guide posts for future experiments.  相似文献   

17.
A detailed analysis of the characteristics of coronal mass ejections (CMEs) and flares associated with decameter-hectometer wavelength type-II radio bursts (hereafter DH-type-II radio bursts, DH-CMEs or radio-loud CMEs) observed in the period 1997??C?2008 is presented. A sample of 61 limb events is divided into two populations based on the residual acceleration: accelerating CMEs (a r>0) and decelerating CMEs (a r<0). We found that average speed (residual acceleration) of all limb DH-CMEs (called radio-loud CMEs) is nearly three (two) times greater than the average speed of the general population CMEs (radio-quiet CMEs). While the initial acceleration (a i) of the accelerating DH-CMEs is smaller than that of decelerating DH-CMEs (0.79 and 1.62 km?s?2, respectively), the average speed and magnitude of residual acceleration of the accelerating and decelerating DH-CMEs are similar (??V CME??: 1254 km?s?1 and 1303 km?s?1; ??a r??: 0.026 km?s?2 and 0.028 km?s?2, respectively). The accelerating DH-CMEs attain their peak speed at larger heights than decelerating DH-CMEs. A good positive and negative linear correlation for accelerating and decelerating DH-CMEs (R a=0.74 and R d=?0.77, respectively) is found. The flares associated with accelerating DH-CME events have longer rise times and decay times than flares of decelerating DH-CME. The accelerating and decelerating DH-CMEs events associated with DH-type-II bursts have similar ending frequencies. The analysis of time lags between DH-type-II start and the flare onset shows that the delays are longer in accelerating DH-CMEs than decelerating DH-CMEs (P??7 %). However, the time lags between the DH-type-II start and the CMEs onset are similar.  相似文献   

18.
The characteristics of a decameter type II burst associated with a possible behind-the-limb flare are discussed. The burst source had an unusually high velocity. Assuming that the disturbance propagated as an MHD wave, the magnetic field strength at the 40 MHz plasma level is estimated to be 5.6 gauss.  相似文献   

19.
We have observed an eruptive prominence at the east solar limb on 25 January 1991 which started earlier than 0623 UT and was associated with a limb flare (S16 E90) of class 1B/ X10.0. We have recorded a huge mass ejection in the corona by the limb flare associated eruptive prominence. The eruptive prominence ejected a part of the loop in the corona with maximum speed of about 1280 km/sec. The ejected material attain height upto 150,000 km in the corona and finally faded/disappeared in the corona. During the ascending phase of the prominence material in the corona there was a unscrewing of the loop system associated with the eruptive prominence. The type II, III, and IV radio bursts were also reported by a number of Radio Observatories during observation of the eruptive prominence. The high flux of sudden ionospheric disturbances and the solar radio emissions on fixed frequencies (245–80000 MHz) were also recorded. The eruptive prominence associated with limb flare also shows increased proton flux (>10 MeV) during its occurence. The flare was classified as X10.0 flare. In this paper we have analysed the observed data and compared it with the theoretical model of the solar flare.On leave from his original Institute  相似文献   

20.
The high-resolution vector magnetograms obtained with the solar telescope magnetograph of the Beijing Astronomical Observatory of the active region AR 4862 on 7 October, 1987, close before and after a solar flare, were used to calculate the electric current densities in the region. Then the relations between the flare and the magnetic fields as well as the electric currents were studied. The results are: (i) the transverse magnetic fields, and hence the longitudinal electric currents in the region before and after the flare, are evidently different, while the longitudinal magnetic fields remain unchanged; (ii) this confirms the result obtained previously that the flare kernels coincide with the peaks of longitudinal electric density in active regions; (iii) the close relation between the flare kernels and the electric currents indicates that the variations of the transverse magnetic fields and the longitudinal electric currents arise not from the general global evolution of the active region, but from the flare. These results tend to the conclusion that the triggering of a solar flare might be related with the plasma instability caused by the surplus longitudinal electric currents at some local regions in the solar atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号