首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Titan Saturn System Mission (TSSM) concept is composed of a TSSM orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the probe/lake lander. One overarching goal of TSSM is to explore in situ the atmosphere and surface of Titan. The mission has been prioritized as the second Outer Planets Flagship Mission, the first one being the Europa Jupiter System Mission (EJSM). TSSM would launch around 2023–2025 arriving at Saturn 9 years later followed by a 4-year science mission in the Saturn system. Following delivery of the in situ elements to Titan, the TSSM orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys before entering into a dedicated orbit around Titan. The Titan montgolfière aerial vehicle under consideration will circumnavigate Titan at a latitude of ~20° and at altitudes of ~10 km for a minimum of 6 months. The probe/lake lander will descend through Titan’s atmosphere and land on the liquid surface of Kraken Mare (~75° north latitude). As for any planetary space science mission, and based on the Cassini–Huygens experience, Earth-based observations will be synergistic and enable scientific optimization of the return of such a mission. Some specific examples of how this can be achieved (through VLBI and Doppler tracking, continuous monitoring of atmospheric and surface features, and Direct-to-Earth transmission) are described in this paper.  相似文献   

2.
《Planetary and Space Science》2007,55(13):1845-1876
The European Space Agency's Huygens probe separated from the NASA Cassini spacecraft on 25 December 2004, after having been attached for a 7-year interplanetary journey and three orbits around Saturn. The probe reached the predefined NASA/ESA interface point on 14 January 2005 at 09:05:52.523 (UTC) and performed a successful entry and descent sequence. The probe softly impacted on Titan's surface on the same day at 11:38:10.77 (UTC) with a speed of about 4.54 m/s. The probe entry and descent trajectory was reconstructed from the estimated initial state vector provided by the Cassini Navigation team, the probe housekeeping data, and measurements from the scientific payload. This paper presents the methodology and discuss the results of the reconstruction effort. Furthermore the probe roll rate was reconstructed prior to the main entry phase deceleration pulse and throughout the entire descent phase under the main and drogue parachute.  相似文献   

3.
《Planetary and Space Science》2007,55(13):1877-1885
Cassini/Huygens, a flagship mission to explore the rings, atmosphere, magnetic field, and moons that make up the Saturn system, is a joint endeavor of the National Aeronautics and Space Administration, the European Space Agency, and Agenzia Spaziale Italiana. Comprising two spacecraft—a Saturn orbiter built by NASA and a Titan entry/descent probe built by the European Space Agency—Cassini/Huygens was launched in October 1997. The Huygens probe parachuted to the surface of Titan in January 2005. During the descent, six science instruments provided in situ measurements of Titan's atmosphere, clouds, and winds, and photographed Titan's surface. To correctly interpret and correlate results from the probe science experiments, and to provide a reference set of data for ground-truth calibration of orbiter remote sensing measurements, an accurate reconstruction of the probe entry and descent trajectory and surface landing location is necessary. The Huygens Descent Trajectory Working Group was chartered in 1996 as a subgroup of the Huygens Science Working Team to develop and implement an organizational framework and retrieval methodologies for the probe descent trajectory reconstruction from the entry altitude of 1270 km to the surface using navigation data, and engineering and science data acquired by the instruments on the Huygens Probe. This paper presents an overview of the Descent Trajectory Working Group, including the history, rationale, goals and objectives, organizational framework, rules and procedures, and implementation.  相似文献   

4.
The Cassini spacecraft will arrive at Saturn in 2004 carrying the Huygens probe. The beginning of the Cassini tour at Saturn has been redesigned to achieve a different relative orbiter/probe geometry in order to compensate for the probe relay receiver design flaw that was discovered during tests in February 2000. This paper presents a numerical simulation of the Huygens atmospheric entry and descent trajectory and the Cassini flyby trajectory during the probe mission. A variety of parameters that are crucial for the probe system and its scientific payload have been calculated and analyzed together with an assessment of their uncertainties. Furthermore the orbiter/probe relay link was simulated in order to assess any potential data loss on the basis of an analytical model of the actual Huygens receiver onboard the Cassini spacecraft. The redesigned Cassini/Huygens mission satisfies all science and engineering requirements and assures the best possible radio link for the entire nominal mission duration.  相似文献   

5.
NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research’s (COSPAR’s) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable “ground truth” data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.  相似文献   

6.
Cassini/Huygens is a joint National Aeronautics and Space Administration (NASA)/European Space Agency (ESA)/Agenzia Spaziale Italiana (ASI) mission on its way to explore the Saturnian system. The ESA Huygens Probe is scheduled to be released from the Orbiter on 25 December 2004 and enter the atmosphere of Titan on 14 January 2005. Probe delivery to Titan, arbitrarily defined to occur at a reference altitude of 1270 km above the surface of Titan, is the responsibility of the NASA Jet Propulsion Laboratory (JPL). ESA is then responsible for safely delivering the probe from the reference altitude to the surface. The task of reconstructing the probe trajectory and attitude from the entry point to the surface has been assigned to the Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team. The DTWG will use data provided by the Huygens Probe engineering subsystems and selected data sets acquired by the scientific payload. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for possible “ground-truthing” Orbiter remote sensing measurements, it is essential that the trajectory reconstruction be performed as early as possible in the post-flight data analysis phase. The reconstruction of the Huygens entry and descent trajectory will be based primarily on the probe entry state vector provided by the Cassini Navigation Team, and measurements of acceleration, pressure, and temperature made by the Huygens Atmospheric Structure Instrument (HASI). Other data sets contributing to the entry and descent trajectory reconstruction include the mean molecular weight of the atmosphere measured by the probe Gas Chromatograph/Mass Spectrometer (GCMS) in the upper atmosphere and the Surface Science Package (SSP) speed of sound measurement in the lower atmosphere, accelerations measured by the Central and Radial Accelerometer Sensor Units (CASU/RASU), and the probe altitude by the two probe radar altimeters during the latter stages of the descent. In the last several hundred meters, the altitude determination will be constrained by measurements from the SSP acoustic sounder. Other instruments contributing data to the entry and descent trajectory and attitude determination include measurements of the zonal wind drift by the Doppler Wind Experiment (DWE), and probe zonal and meridional drift and probe attitude by the Descent Imager and Spectral Radiometer (DISR). In this paper, the need for and the methods by which the Huygens Probe entry and descent trajectory will be reconstructed are reviewed.  相似文献   

7.
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.  相似文献   

8.
SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 scientific programme. The SMART-1 mission is dedicated to testing of new technologies for future cornerstone missions, using Solar-Electric Primary Propulsion (SEPP) in Deep Space. The chosen mission planetary target is the Moon. The target orbit will be polar with the pericentre close to the South-Pole. The pericentre altitude lies between 300 and 2000 km, while the apocentre will extend to about 10,000 km. During the cruise phase, before reaching the Moon, the spacecraft thrusting profile allows extended periods for cruise science. The SMART-1 spacecraft will be launched in the spring of 2003 as an auxiliary passenger on an Ariane 5 and placed into a Geostationary Transfer Orbit (GTO). The expected launch mass is about 370 kg, including 19 kg of payload. The selected type of SEPP is a Hall-effect thruster called PPS-1350. The thruster is used to spiral out of the GTO and for all orbit maneuvers including lunar capture and descent. The trajectory has been optimised by inserting coast arcs and the presence of the Moon's gravitational field is exploited in multiple weak gravity assists.The Development Phase started in October 1999 and is expected to be concluded by a Flight Acceptance Review in January 2003. The short development time for this high technology spacecraft requires a concerted effort by industry, science institutes and ESA centres. This paper describes the mission and the project development status both from a technical and programmatic standpoint.  相似文献   

9.
10.
The Cassini–Huygens mission, comprising the NASA Saturn Orbiter and the ESA Huygens Probe, arrived at Saturn in late June 2004. The Huygens probe descended under parachute in Titan’s atmosphere on 14 January 2005, 3 weeks after separation from the Orbiter. We discuss here the breakthroughs that the Huygens probe, in conjunction with the Cassini spacecraft, brought to Titan science. We review the achievements ESA’s Huygens probe put forward and the context in which it operated. The findings include new localized information on several aspects of Titan science: the atmospheric structure and chemical composition; the aerosols distribution and content; the surface morphology and composition at the probe’s landing site; the winds, the electrical properties, and the implications on the origin and evolution of the satellite.  相似文献   

11.
In this paper we will summarize some of the most important results of the Cassini mission concerning the satellites of Saturn. The Cassini Mission was launched in October 1997 on a Titan IV-Centaur rocket from Cape Canaveral. Cassini mission was always at risk of cancelation during its development but was saved many times thanks to the great international involvement. The Cassini mission is in fact a NASA-ESA-ASI project. The main effort was made by NASA, which provided the launch facilities, the integration and several instruments; ESA provided the Huygens probe while ASI some of the key elements of the mission such as the high-gain antenna, most of the radio system and important instruments of the Orbiter, such as the Cassini Radar and the visual channel of the VIMS experiment. ASI contributed also to the development of HASI experiment on Huygens probe. The Cassini mission was the first case in which the Italian planetology community was directly involved, developing state of the art hardware for a NASA mission. Given the long duration of the mission, the complexity of the payload onboard the Cassini Orbiter and the amount of data gathered on the satellites of Saturn, it would be impossible to describe all the new discoveries made, therefore we will describe only some selected, paramount examples showing how Cassini’s data confirmed and extended ground-based observations. In particular we will describe the achievements obtained for the satellites Phoebe, Enceladus and Titan. We will also put these examples in the perspective of the overall evolution of the system, stressing out why the selected satellites are representative of the overall evolution of the Saturn system. Cassini is also an example of how powerful could be the coordination between ground-based and space observations. In fact coordinated ground-based observations of Titan were performed at the time of Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the in situ observations by the probe with the general view provided by ground-based measurements. Different telescopes operating at different wavelengths were used, including radio telescopes (up to 17-tracking of the Huygens signal at 2040 MHz), eight large optical observatories studying the atmosphere and surface of Titan, and high-resolution infrared spectroscopy used to observe radiation emitted during the Huygens Probe entry (Witasse et al. J. Geophys. Res. 111:E07S01, 2006).  相似文献   

12.
Jupiter’s satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites’ surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers \(k_2\) and \(h_2\) for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags \( \phi _{k_2}\) and \( \phi _{h_2}\) of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference \(\varDelta \phi = \phi _{k_2}- \phi _{h_2}\) can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities \({<}10^{14}\) Pa s and would indicate a highly dissipative state of the deep interior. In this case \(\varDelta \phi \) is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa \(\varDelta \phi \) could reach values exceeding \(20^\circ \) and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA’s Jupiter Icy Moons Explorer (JUICE) and NASA’s Europa Multiple Flyby Mission, both targeted for the Jupiter system.  相似文献   

13.
The process of identifying the landing site for NASA’s 2011 Mars Science Laboratory (MSL) began in 2005 by defining science objectives, related to evaluating the potential habitability of a location on Mars, and engineering parameters, such as elevation, latitude, winds, and rock abundance, to determine acceptable surface and atmospheric characteristics. Nearly 60 candidate sites were considered at a series of open workshops in the years leading up to the launch. During that period, iteration between evolving engineering constraints and the relative science potential of candidate sites led to consensus on four final sites. The final site will be selected in the Spring of 2011 by NASA’s Associate Administrator for the Science Mission Directorate. This paper serves as a record of landing site selection activities related primarily to science, an inventory of the number and variety of sites proposed, and a summary of the science potential of the highest ranking sites.  相似文献   

14.
The Heliospheric Imagers Onboard the STEREO Mission   总被引:1,自引:0,他引:1  
Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun?–?Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements.  相似文献   

15.
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This ‘dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.  相似文献   

16.
MarcoPolo-R near earth asteroid sample return mission   总被引:3,自引:0,他引:3  
MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) proposed in collaboration with NASA. It will rendezvous with a primitive NEA, scientifically characterize it at multiple scales, and return a unique sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. MarcoPolo-R will return bulk samples (up to 2?kg) from an organic-rich binary asteroid to Earth for laboratory analyses, allowing us to: explore the origin of planetary materials and initial stages of habitable planet formation; identify and characterize the organics and volatiles in a primitive asteroid; understand the unique geomorphology, dynamics and evolution of a binary NEA. This project is based on the previous Marco Polo mission study, which was selected for the Assessment Phase of the first round of Cosmic Vision. Its scientific rationale was highly ranked by ESA committees and it was not selected only because the estimated cost was higher than the allotted amount for an M class mission. The cost of MarcoPolo-R will be reduced to within the ESA medium mission budget by collaboration with APL (John Hopkins University) and JPL in the NASA program for coordination with ESA’s Cosmic Vision Call. The baseline target is a binary asteroid (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also provides enhanced science return. The choice of this target will allow new investigations to be performed more easily than at a single object, and also enables investigations of the fascinating geology and geophysics of asteroids that are impossible at a single object. Several launch windows have been identified in the time-span 2020–2024. A number of other possible primitive single targets of high scientific interest have been identified covering a wide range of possible launch dates. The baseline mission scenario of MarcoPolo-R to 1996 FG3 is as follows: a single primary spacecraft provided by ESA, carrying the Earth Re-entry Capsule, sample acquisition and transfer system provided by NASA, will be launched by a Soyuz-Fregat rocket from Kourou into GTO and using two space segment stages. Two similar missions with two launch windows, in 2021 and 2022 and for both sample return in 2029 (with mission duration of 7 and 8?years), have been defined. Earlier or later launches, in 2020 or 2024, also offer good opportunities. All manoeuvres are carried out by a chemical propulsion system. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3, Marco Polo Yellow Book) and of the expertise of the consortium led by Dr. A.F. Cheng (PI of the NASA NEAR Shoemaker mission) of the JHU-APL, including JPL, NASA ARC, NASA LaRC, and MIT.  相似文献   

17.
The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle. A?series of apogee-motor firings lifted SDO from an initial geosynchronous transfer orbit into a circular geosynchronous orbit inclined by 28° about the longitude of the SDO-dedicated ground station in New Mexico. SDO began returning science data on 1 May 2010. SDO is the first space-weather mission in NASA’s Living With a Star (LWS) Program. SDO’s main goal is to understand, driving toward a predictive capability, those solar variations that influence life on Earth and humanity’s technological systems. The SDO science investigations will determine how the Sun’s magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. Insights gained from SDO investigations will also lead to an increased understanding of the role that solar variability plays in changes in Earth’s atmospheric chemistry and climate. The SDO mission includes three scientific investigations (the Atmospheric Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helioseismic and Magnetic Imager (HMI)), a spacecraft bus, and a dedicated ground station to handle the telemetry. The Goddard Space Flight Center built and will operate the spacecraft during its planned five-year mission life; this includes: commanding the spacecraft, receiving the science data, and forwarding that data to the science teams. The science investigations teams at Stanford University, Lockheed Martin Solar Astrophysics Laboratory (LMSAL), and University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will process, analyze, distribute, and archive the science data. We will describe the building of SDO and the science that it will provide to NASA.  相似文献   

18.
The SOHO mission: An overview   总被引:3,自引:0,他引:3  
The Solar and Heliospheric Observatory (SOHO) is a space mission that forms part of the Solar-Terrestrial Science Program (STSP), developed in a collaborative effort by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The STSP constitutes the first cornerstone of ESA's long-term programme known as Space Science — Horizon 2000. The principal scientific objectives of the SOHO mission are a) to reach a better understanding of the structure and dynamics of the solar interior using techniques of helioseismology, and b) to gain better insight into the physical processes that form and heat the Sun's corona, maintain it and give rise to its acceleration into the solar wind. To achieve these goals, SOHO carries a payload consisting of 12 sets of complementary instruments. SOHO is a three-axis stabilized spacecraft with a total mass of 1850 kg; 1150 W of power will be provided by the solar panels. The payload weighs about 640 kg and will consume 450 W in orbit. SOHO will be launched by an ATLAS II-AS and will be placed in a halo orbit around the Sun-Earth L1 Lagrangian point where it will be continuously pointing to Sun centre with an accuracy of 10 arcsec. Pointing stability will be better than 1 arcsec over 15 min intervals. The SOHO payload produces a continuous science data stream of 40 kbits/s which will be increased by 160 kbits/s whenever the solar oscillations imaging instrument is operated in its highrate mode. Telemetry will be received by NASA's Deep Space Network (DSN). Planning, coordination and operation of the spacecraft and the scientific payload will be conducted from the Experiment Operations Facility (EOF) at NASA's Goddard Space Flight Center (GSFC).  相似文献   

19.
This report presents both a retrospective of ground-based support for spacecraft missions to the outer solar system and a perspective of support for future missions. Past support is reviewed in a series of case studies involving the author. The most basic support is essential, providing the mission with information without which the planned science would not have been accomplished. Another is critical, without which science would have been returned, but missing a key element in its understanding. Some observations are enabling by accomplishing one aspect of an experiment which would otherwise not have been possible. Other observations provide a perspective of the planet as a whole which is not available to instruments with narrow fields of view and limited spatial coverage, sometimes motivating a re-prioritizing of experiment objectives. Ground-based support is also capable of providing spectral coverage not present in the complement of spacecraft instruments. Earth-based observations also have the capability of filling in gaps of spacecraft coverage of atmospheric phenomena, as well as providing surveillance of longer-term behavior than the coverage available to the mission. Future missions benefiting from ground-based support would include the Juno mission to Jupiter in the next decade, a flagship-class mission to the Jupiter or to the Saturn systems currently under consideration, and possible intermediate-class missions which might be proposed in NASA’s New Frontiers category. One of the principal benefits of future 30 m-class giant telescopes would be to improve the spatial resolution of maps of temperature and composition which are derived from observations of thermal emission at mid-infrared and longer wavelengths. In many situations, this spatial resolution is competitive with those of the relevant instruments on the spacecraft themselves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号