首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On April 6, 2009 a ML = 5.8 earthquake hit the city of L’Aquila on the Apennine chain in central Italy. Notwithstanding the moderate-size event the L’Aquila city and several small villages along the Aterno river valley suffered severe damage, because of the unusual strong motions, mainly due to proximity to the fault (estimated hypocentral depth of about 10 km). In this paper the main features of the recorded motion are discussed. Four accelerometric stations were located within the surface projection of the fault and recorded peak values ranging from 0.4 to 0.6 g. The recorded motions were characterised by short durations and high peak accelerations both in the horizontal and vertical directions. The strong portions of vertical and horizontal motions occurred almost simultaneously due to the short travel paths of P and S waves from the fault to the ground surface near the fault area. Hence site response analyses were performed for the sites where recording stations were located. The geotechnical subsoil model was derived by boreholes, in situ dynamic tests (D-H and SDMT) and by laboratory tests (RCT). One-dimensional numerical analyses were carried out employing the well known computer code EERA. The numerical model was calibrated, in the linear equivalent range, by comparing numerical results with the horizontal acceleration recorded components.  相似文献   

2.
3.
A temporary network of 33 seismic stations was deployed in the area struck by the 6th April 2009, Mw 6.1 (Scognamiglio et?al. in Seism Res Lett 6/81, 2010), L??Aquila earthquake (central Italy), with the aim to investigate the site amplification within the Aterno river Valley. The seismograms of 18 earthquakes recorded by 14 of the 33 stations were used to evaluate the average horizontal to vertical spectral ratio (HVSR) for each site and the standard horizontal spectral ratio (SSR) between a site and a reference station. The obtained results have been compared to the geological and geophysical information in order to explain the resonance frequencies and the amplification levels with respect to surface geology of the valley. The results indicate that there is no uniform pattern of amplification, because of the complex geologic setting, as the thickness and degree of cementation of the deposits is highly variable.  相似文献   

4.
During the microzonation studies of the April 6th, 2009 L??Aquila earthquake, we observed local seismic amplifications in the Roio area??a plane separated from L??Aquila city center by mount Luco. Six portable, digital instruments were deployed across the plain from 15 April to mid-May 2009. This array recorded 152 aftershocks. We analyzed the ground motion from these events to determine relative site amplification within the plain and on surrounding ridges. Horizontal over vertical spectral ratio on noise data (HVSRN), aftershock recordings (HVEQ) and standard spectral ratio (SSR) showed amplifications at 1.3 and 4.0?Hz on quaternary deposits. Seismic amplifications in the frequency range of 4 and 6?Hz were also observed on a carbonate ridge of Colle di Roio, on the northwestern border of the plateau. A small amplification was noticed near the top of mount Luco, another rocky site. Large discrepancies in the amplification levels between methods have been observed for these sites, but the HVSRN, HVEQ and SSR gave similar results at the stations located in the Roio plain. On the rocky sites, the SSR was more reliable than the HVSRN at estimating the transfer function of the site, even if the resonance frequency seemed to be well detected by the latter method.  相似文献   

5.
In Italy infills and partitions (non-structural elements) are typically made up of hollow brick masonry, disposed in one or two parallel vertical walls. Many studies have analysed their role on the seismic behaviour of moment resisting framed RC buildings and many seismic codes, all over the world, have provided specific additional measures for them. During the Abruzzo seismic sequence, non-structural damage in RC buildings, both private and public, was extensive, varying from small cracks to collapse, along with minor or no damage to structural elements. This damage involved a number of buildings, both old and recently completed, determining heavy socio-economic consequences, including human casualties, loss of building functionality (particularly important in case of strategic constructions), and unusable buildings. In this paper a review of the most frequent damage patterns is performed, aimed at identifying the main causes of damage and linking them to commonly adopted construction rules. For this purpose, local and global structural configurations frequently exhibiting non-structural damage are described, aside from out-of-plane and in-plane failures. Furthermore, a review of code provisions on non structural elements has been performed in the paper making reference to the most prominent current seismic codes and, finally, some design and construction rules are suggested.  相似文献   

6.
This paper is focused on the illustration of on site works developed on some historical centres struck by L’Aquila earthquake of April 6, 2009 starting from the first emergency phase. The large number of minor historical centres damaged and the highly differentiated level of damage occurred implied the need of different procedures to study them. The common goal of all these studies is to illustrate the variability of the seismic response of historical masonry buildings trying to identify both the causes that have increased the damage (vulnerabilities) and the factors that have limited or prevented it (strengths). The preliminary results allow to formulate a first evaluation in view of drawing up reconstruction plans.  相似文献   

7.
LinearinversionofseismicmomenttensorsofgeneralpointsourcebyusinggeneralizedraytheoryRUI-FENGLIU(刘瑞丰)JING-PINGDANG(党京平)SHAO-D...  相似文献   

8.
It gradually becomes a common work using large seismic wave data to obtain source parameters, such as seismic moment, break radius, stress drop, with completing of digital seismic network in China (Hough, et al, 1999; Bindi, et al, 2001). These parameters are useful on earthquake prediction and seismic hazard analysis. Although the computation methods of source parameters are simple in principle and the many research works have been done, it is not easy to obtain the parameters accurately. Th…  相似文献   

9.
It gradually becomes a common work using large seismic wave data to obtain source parameters, such as seismic moment, break radius, stress drop, with completingof digital seismic network in China (Hough, et al, 1999; Bindi, et al, 2001). These parameters are useful on earthquake prediction and seismic hazard analysis.Although the computation methods of source parameters are simple in principle and the many research works have been done, it is not easy to obtain the parameters accurately. There are two factors affecting the stability of computation results. The first one is the effect of spread path and site respond on signal. According to the research results, there are different geometrical spreading coefficients on different epicenter distance. The better method is to introduce trilinear geometrical spreading model (Atkinson, Mereu, 1992; Atkinson, Boore, 1995; WONG, et al, 2002). In addition, traditional site respond is estimated by comparing with rock station, such as linear inversion method (Andrews, 1982), but the comparative estimation will introduce some errors when selecting different stations. Some recent research results show that site respond is not flat for rock station (Moya, et al, 2000; ZHANG,. et al, 2001; JIN, et al, 2000; Dutta, et al, 2001). The second factor is to obtain low-frequency level and corner frequency fromdisplacement spectrum. Because the source spectrum model is nonlinear function,these values are obtained by eye. The subjectivity is strong. The small change of corner frequency will affect significantly the result of stress drop.  相似文献   

10.
The 2009 Mw 6.3 L’Aquila event caused extensive damage in the city of L’Aquila and in some small towns in its vicinity. The most severe damage was recognized SE of L’Aquila town along the Aterno river valley. Although building vulnerability and near-source effects are strongly responsible for the high level of destruction, site effects have been invoked to explain the damage heterogeneities and the similarities between the 2009 macroseismic field with the intensities of historical earthquakes. The small village of Onna is settled on quaternary alluvium and suffered during the L’Aquila event an extremely heavy damage in the masonry structures with intensity IX–X on the Mercalli-Cancani-Sieberg (MCS) scale. The village of Monticchio, far less than 1.3 km from Onna, is mostly situated on Mesozoic limestone and suffered a smaller level of damaging (VI MCS). In the present paper, we analyze the aftershock recordings at seismic stations deployed in a small area of the middle-Aterno valley including Onna and Monticchio. The aim is to investigate local amplification effects caused by the near-surface geology. Because the seismological stations are close together, vulnerability and near-source effects are assumed to be constant. The waveform analysis shows that the ground motion at Onna is systematically characterized by large high-frequency content. The frequency resonance is varying from 2 to 3 Hz and it is related to alluvial sediments with a thickness of about 40 m that overlay a stiffer Pleistocene substrate. The ground motion recordings of Onna are well reproduced by the predictive equation for the Italian territory.  相似文献   

11.
12.
Using a time series method that combines both the persistent scatterer and small baseline approaches, we analyzed 9 scenes Envisat ASAR data over the L'Aquila earthquake, and obtained a Shocke's displacement field and its evolution processes. The results show that: (1) Envisat ASAR clearly detected the whole processes of displacement field of the L'Aquila earthquake, and distinct variations at different stages of the displacement field. (2) Preseismic creep displacement → displacement mutation when faulting → constantly slowed down after the earthquake. (3) The area of the strongest deformation and ground rupture was a low-lying oval depression region to the southeast. Surface faulting within a zone of about 22 km× 14 km, with an orientation of 135°, occurred along the NW-striking and SW-dipping Paganica-S. Demetrio normal fault. (4) In analyzing an area of about 54 km x 59 km, bounded by north-south axis to the epicenter, the displacement field has significant characteristics of a watershed: westward of the epicenter shows uplift with maximum of 130 mm in line-of-sight (LOS), and east of the epicenter was a region with 220 mm of maximum subsidence in the LOS, concentrating on the rupture zone, the majority of which formed in the course of faulting and subsequence.  相似文献   

13.
Using a time series method that combines both the persistent scatterer and small baseline approaches, we analyzed 9 scenes Envisat ASAR data over the L’Aquila earthquake, and obtained a Shocke’s displacement field and its evolution processes. The results show that: (1) Envisat ASAR clearly detected the whole processes of displacement field of the L’Aquila earthquake, and distinct variations at different stages of the displacement field. (2) Pre-seismic creep displacement → displacement mutation when faulting → constantly slowed down after the earthquake. (3) The area of the strongest deformation and ground rupture was a low-lying oval depression region to the southeast. Surface faulting within a zone of about 22 km × 14 km, with an orientation of 135°, occurred along the NW-striking and SW-dipping Paganica-S. Demetrio normal fault. (4) In analyzing an area of about 54 km × 59 km, bounded by north–south axis to the epicenter, the displacement field has significant characteristics of a watershed: westward of the epicenter shows uplift with maximum of 130 mm in line-of-sight (LOS), and east of the epicenter was a region with 220 mm of maximum subsidence in the LOS, concentrating on the rupture zone, the majority of which formed in the course of faulting and subsequence.  相似文献   

14.
Ground motion for the 6 April 2009 (Mw 6.3) earthquake is computed along 2-D cross-sections at L’Aquila by a hybrid method (modal summation plus finite differences) and validated with recordings at AQU, AQK, AQG, AQA and AQV stations. Parametric studies of S-wave velocities of the shallowest lithotypes allow to get a general agreement between synthetic and observed response spectra, despite the scaled point-source approach and the lack of detailed geological and seismic studies. It results that the megabreccia covering on lacustrine soils, characterizing the historical center of L’Aquila, is responsible of spectral amplifications along the vertical (2–7) and horizontal components (2–3) at a wide frequency range (0.6–7 Hz). The covering of alluvial soils in the middle Aterno river valley is responsible of amplifications at 2–7 Hz both in the horizontal and vertical planes of the motion. Such amplifications evidence that site effects might have been responsible of structural damages.  相似文献   

15.
The earthquake of April 6th, 2009 in the L’Aquila area is one of the largest seismic events of the last years in Italy. The event, that caused significant damage in a large area of the Abruzzo region (cental Italy) and site amplification phenomena which were recorded even at large distances from the epicentre. After the emergency period, a detailed study of the surface effects was necessary for the post-earthquake reconstruction, but in a way it should be carried out rapidly enough to give instructions to urban planners, codes to public administrators and information to engineers. A team of surveyors were trained to collect field information such as geologic and geomorphologic features and geotechnical or geophysical information. The seismic inputs, for the numerical analyses, were provided, and the collected information were analyzed with the aid of dynamic codes to calculate the possible local site effects. The results are presented as acceleration response spectra, amplification coefficients (FA, FV and FH) and microzonation maps, aimed to urban planning and project design. In particular the more dangerous areas, affected by the higher amplification effects, were identified. Finally a comparison between the results obtained by the numerical analyses and the results derived from an experimental field analysis, measuring both earthquake weak motion and ambient noise, were performed. In this paper we present the results for one of the most severely damaged area (up to IX-X MCS), the Paganica–Tempera–Onna-San Gregorio area, located 6 to 10 km east of the April 6th main shock.  相似文献   

16.
Introduction The Lulong county is about 75 km northeast to Tangshan in Hebei Province. An earthquake of ML=6.2 took place on October 19, 1982 about 4 km northeast to the county town. The epicenter of the mainshock is located at 39°57′N, 119°04′E by the Beijing seismic network. The 1976 Tang- shan 7.8 earthquake and the successive Luanxian 7.1, Ninghe 6.9 and the Lulong earthquake spread in NE-SW direction in space. SONG and WANG et al of Institute of Geophysics, China Seismolog…  相似文献   

17.
L’Aquila earthquake, which occurred on April 6, 2009, proved the high vulnerability of cultural heritage, with particular reference to churches. Damage assessment in the emergency was carried out on more than 700 churches with a methodology aimed at recognizing the collapse mechanisms in the different architectonic elements of the church. The method was developed after the earthquake in Umbria and the Marches (1997) and has been widely used in the last decade; this approach is also very useful for seismic prevention, as it allows one to single out the most vulnerable structures. Some examples are presented in this paper, representative of recurrent damage in the main elements of the church: the fa?ade, the roof, the apse and the belfry. It emerges that, for a correct interpretation of damage and vulnerability, it is necessary a deep knowledge of local construction techniques and of the historic transformation sequence. Moreover, the bad behaviour of churches strengthened by modern techniques, such as the substitution of original timber roofs with stiff and heavy r.c. slabs, was observed. Starting from the observation of some case studies, the paper achieves some worth results, which may be useful for correctly driving future strengthening interventions.  相似文献   

18.
An Mw 6.25 earthquake occurred on April 6, 2009 at 03:33 a.m. local time, in the Abruzzo region (Central Italy), close to the city of L’Aquila. The earthquake ruptured a North-West (NW)–South-East (SE) oriented normal fault dipping toward the South-West (SW), with the city of L’Aquila lying a few kilometers away on the hanging wall.The main shock has been recorded by fifty-eight accelerometric stations: the highest number of digital recordings ever obtained in Italy for a single earthquake, one of the best-recorded earthquakes with a normal fault mechanism. Very high values of peak ground acceleration (0.3–0.65 g) were observed close to the center of L’Aquila (6 stations at zero JB distance from the fault). The earthquake caused severe loss of lives (299 victims and 1500 injured) and damage (about 18000 unusable buildings) in the epicentral area.In this study we analyze the ground motion characteristics of both the main shock in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and pseudo-acceleration response spectra (5% of damping ratio). In particular, we compare the pseudo-acceleration response spectra for horizontal directions with the EC8 design spectrum and the new Italian building code (NTC08). In order to understand the characteristics of the ground motions induced by L’Aquila earthquake, we also study the source-related effects and site response of the strong motion stations that recorded the seismic sequence. A novel method is used for the analysis of inter-station and site-specific H/V spectral ratios for the main event and for 12 aftershocks.  相似文献   

19.
On 6th April 2009 an earthquake of magnitude M w =  6.3 occurred in the Abruzzo region; the epicentre was very close to the city of L’Aquila (about 6 km away). The event produced casualties and damage to buildings, lifelines and other infrastructures. An analysis of the main damage that reinforced concrete (RC) structures showed after the event is presented in this study. In order to isolate the main causes of structural and non-structural damage, the seismological characteristics of the event are examined, followed by an analysis of the existing RC building stock in the area. The latter issue came under scrutiny after the release of official data about structural types and times of construction, combined with a detailed review of the most important seismic codes in force in the last 100 years in Italy. Comparison of the current design provisions of the Italian and European codes with previous standards allows the main weaknesses of the existing building stock to be determined. Damage to structural and non-structural elements is finally analyzed thanks to photographic material collected in the first week after the event; the main causes of damage are then inferred.  相似文献   

20.
An inversion of site response and Lg attenuation using Lg waveform   总被引:1,自引:0,他引:1  
Based on spectral ratio method, a joint inversion method was used to obtain parameters of Lg wave attenuation and site response. The inversion method allows simple and direct (two-parameter) determination of Lg wave attenua- tion and site response from sparse spectral data, which are not affected by radiation pattern factor and different response of same instrument after geometrical spreading. The method was used successfully for estimating site re- sponse of stations of Zhejiang Seismic Network and measuring Lg wave attenuation. The study is based on 20 earth- quakes occurred in northeast of Taiwan with magnitude MS5.0~6.7 and 960 seismic wave records from 16 stations in Zhejiang area from 2002 to 2005. The parameters of site response and Lg attenuation were calculated with a fre- quency interval of 0.2 Hz in the range of 0.5 Hz to 10 Hz. Lg wave attenuation coefficient corresponding to U-D, E-W and N-S components are γ ( f )=0.00175 f 0.43485, γ ( f )=0.00145f 0.48467 and γ ( f )=0.0021f 0.41241, respectively. It is found that the site response is component-independent. It is also found that the site response of QIY station is significant above the frequency of 1.5 Hz, and that the site response of NIB station is low for most frequency  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号