首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
This study, based on 3.5 kHz SBP, 3D seismic data and long piston cores obtained during MD179 cruise, elucidated the timing and causes of pockmark and submarine canyon formation on the Joetsu Knoll in the eastern margin of the Sea of Japan. Gas hydrate mounds and pockmarks aligned parallel to the axis on the top of the Joetsu Knoll are associated with gas chimneys, pull-up structures, faults, and multiple bottom-simulating reflectors (BSRs), suggesting that thermogenic gas migrated upward through gas chimneys and faults from deep hydrocarbon sources and reservoirs. Seismic and core data suggest that submarine canyons on the western slope of the Joetsu Knoll were formed by turbidity currents generated by sand and mud ejection from pockmarks on the knoll. The pockmark and canyon formation probably commenced during the sea-level fall, lasting until transgression stages. Subsequently, hydropressure release during the sea level lowering might have instigated dissociation of the gas hydrate around the base of the gas hydrate, leading to generation and migration of large volumes of methane gas to the seafloor. Accumulation of hydrate caps below mounds eventually caused the collapse of the mounds and the formation of large depressions (pockmarks) along with ejection of sand and mud out of the pockmarks, thereby generating turbidity currents. Prolonged pockmark and submarine canyon activities might have persisted until the transgression stage because of time lags from gas hydrate dissociation around the base of the gas hydrate until upward migration to the seafloor. This study revealed the possibility that submarine canyons were formed by pockmark activities. If that process occurred, it would present important implications for reconstructing the long-term history of shallow gas hydrate activity based on submarine canyon development.  相似文献   

2.
南海北部陆坡区神狐海域构造特征及对水合物的控制   总被引:5,自引:0,他引:5  
通过对南海北部陆坡区神狐海域高精度2D和3D地震资料的精细解释,在研究区共识别出4种构造类型,分别为气烟囱(流体底辟)、区域大尺度断层、深水扇中的正断层和滑移体中的滑脱断层。气烟囱具有直立的通道形态,其内部结构可划分为杂乱反射带、模糊反射带和顶部强振幅区域。大尺度断层位于水合物钻探区的西北部和东北部,断层规模大,对深部地层表现出明显的控制作用。深水扇中的正断层广泛发育于上新世的深水扇中,特别是在水合物钻探区西部进积特征明显的深水扇中,正断层的数量更多。滑移体中的滑脱断层在神狐海域的第四纪地层中非常常见,在剖面上呈雁列式分布。研究结果表明,大尺度断层由于和水合物钻探区的距离较远,对于水合物的成藏可能不起控制作用。气烟囱和规模小数量多的断裂体系为含气流体的运移提供了垂向和侧向的输送通道,构成了水合物的流体运移体系。当富含甲烷气体的流体通过这些垂向-侧向的运移通道时,在合适的温压条件下,被适于水合物聚集的沉积体所捕获,就有可能形成水合物。水合物钻探区内东西部构造特征的差异,使得研究区内形成了不同的流体运移体系,这可能是控制钻探区水合物不均匀性分布的一个关键因素。  相似文献   

3.
柴达木盆地北缘鱼卡河流域水资源的合理利用   总被引:1,自引:0,他引:1  
轮换式地于枯水期在鱼卡河冲洪积扇开采1.87×10~4m~3/d的地下水、丰水期在鱼卡河大桥上游取用1.87×10~4m~3/d的地表水,对马海盆地水资源的影响很小,但有可能引起开采区附近和下游马海盆地局部地区地下水位下降、局部泄出带流量减少、部分地段沼泽湿地轻微退化等与水资源有关的生态环境问题。当地下水位下降到“临界深度”以下时,有利于马海盆地土壤盐渍化不治自愈。  相似文献   

4.
西秦岭南缘白水江群主要由碎屑岩基质和不同性质的岩块组成,碎屑岩为一套深水浊流沉积。碎屑岩的稀土元素球粒陨石标准化曲线以轻稀土元素富集、Eu负异常和重稀土元素平坦为特征;主量元素和微量元素的特征指示白水江群碎屑岩的物质来源具有多源性,但主要以岛弧环境为主。这表明白水江群的构造环境为活动大陆边缘,而非被动大陆边缘。  相似文献   

5.
We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb–Cu–Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.  相似文献   

6.
7.
《China Geology》2020,3(4):611-622
The Makran accretionary prism is located at the junction of the Eurasian Plate, Arabian Plate and Indian Plate and is rich in natural gas hydrate (NGH) resources. It consists of a narrow continental shelf, a broad continental slope, and a deformation front. The continental slope can be further divided into the upper slope, middle slope, and lower slope. There are three types of diapir structure in the accretionary prism, namely mud diapir, mud volcano, and gas chimney. (1) The mud diapirs can be grouped into two types, namely the ones with low arching amplitude and weak-medium activity energy and the ones with high arching amplitude and medium-strong activity energy. The mud diapirs increase from offshore areas towards onshore areas in general, while the ones favorable for the formation of NGH are mainly distributed on the middle slope in the central and western parts of the accretionary prism. (2) The mud volcanoes are mainly concentrated along the anticline ridges in the southern part of the lower slope and the deformation front. (3) The gas chimneys can be grouped into three types, which are located in piggyback basins, active anticline ridges, and inactive anticline ridges, respectively. They are mainly distributed on the middle slope in the central and western parts of the accretionary prism and most of them are accompanied with thrust faults. The gas chimneys located at different tectonic locations started to be active at different time and pierced different horizons. The mud diapirs, mud volcanoes, and gas chimneys and thrust faults serve as the main pathways of gas migration, and thus are the important factors that control the formation, accumulation, and distribution of NGH in the Makran accretionary prism. Mud diapir/gas chimney type hydrate develop in the middle slope, mud volcano type hydrate develop in the southern lower slope and the deformation front, and stepped accretionary prism type hydrate develop on the central and northern lower slope. The middle slope, lower slope and deformation front in the central and western parts of the Makran accretionary prism jointly constitute the NGH prospect area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号