首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

2.
1 INTRODUCTION Magnetic field plays an important role in solar activity. The stressing and subsequent partialrelaxation of magnetic fields in the active regions are generally accepted to be the energy sourceof solar flares. To quantitatively study the extent of stressed magnetic field as distinct from itspotential field, Hagyard et al. (1984) defined a magnetic shear angle膖he azimuth differencebetween the observed transverse magnetic field vector and the computed potential field vectorth…  相似文献   

3.
A New Method of Identifying 3D Null Points in Solar Vector Magnetic Fields   总被引:7,自引:0,他引:7  
Employing the Poincare index of isolated null-points in a vector field, we worked out a mathematical method of searching for 3D null-points in coronal magnetic fields. After introducing the relevant differential topology, we test the method by using the analytical model of Brown & Priest. The location of null-point identified by our method coincides precisely with the analytical solution. Finally we apply the method to the 3D coronal magnetic fields reconstructed from an observed MDI magnetogram of a super-active region (NOAA 10488). We find that the 3D null-point seems to be a key element in the magnetic topology associated with flare occurrence.  相似文献   

4.
In this study we use the ordinal logistic regression method to establish a prediction model, which estimates the probability for each solar active region to produce X-, M-, or C-class flares during the next 1-day time period. The three predictive parameters are (1) the total unsigned magnetic flux T flux, which is a measure of an active region’s size, (2) the length of the strong-gradient neutral line L gnl, which describes the global nonpotentiality of an active region, and (3) the total magnetic dissipation E diss, which is another proxy of an active region’s nonpotentiality. These parameters are all derived from SOHO MDI magnetograms. The ordinal response variable is the different level of solar flare magnitude. By analyzing 174 active regions, L gnl is proven to be the most powerful predictor, if only one predictor is chosen. Compared with the current prediction methods used by the Solar Monitor at the Solar Data Analysis Center (SDAC) and NOAA’s Space Weather Prediction Center (SWPC), the ordinal logistic model using L gnl, T flux, and E diss as predictors demonstrated its automatic functionality, simplicity, and fairly high prediction accuracy. To our knowledge, this is the first time the ordinal logistic regression model has been used in solar physics to predict solar flares.  相似文献   

5.
太阳磁场的极性反转线(Polarity Inversion Line, PIL)是研究太阳活动、分析太阳磁场结构演变和预测太阳耀斑最重要的日面特征之一.磁场极性反转的位置是太阳耀斑和暗条可能出现的位置."先进天基太阳天文台(ASO-S)"是中国首颗空间太阳专用观测卫星,其搭载的"全日面矢量磁像仪(Full-Disk Vector Magnetograph, FMG)"主要任务是探测高空间、高时间分辨率的全日面矢量磁场.为了提高观测数据使用效率、快速监测太阳活动水平、提高太阳耀斑与日冕物质抛射的预报水平以及更好地服务于FMG数据处理与分析系统,采用了图像自动识别与处理技术,更加精确有效地检测极性反转线.从支持向量机(Support Vector Machine, SVM)的模型出发,将极性反转线位置的探测问题转化为一个模式识别中的二分类问题,提出了一种基于支持向量机的极性反转线检测算法,自动探测与识别太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁成像仪(Helioseismic and Magnetic Imager, HMI)磁图的极性反转线位置.与现有算法的对比结果表明,此算法可以精确直观地检测太阳活动区的极性反转线.  相似文献   

6.
1 INTRODUCTIONRecently Bao, Zhang, Ai, and Zhang (1999), using Huairou vector magnetograph data,have shown that the average current helicity (h.) or the curreflt helicity imbalance ph of activeregions change rapidly after so1ar flares. Up'an the onset of flares it tends to decrease for a fewhours and then to increase again, whereas ifQ some cases the flare promotes an increase in thecurrent helicity The observations led to tbe fol1owing conclusions: (1) raPid and substantialchanges of c…  相似文献   

7.
Although systematic measurements of the Sun's polar magnetic field exist only from mid-1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock–Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high (of order  1012 cm2 s−1  ), we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid-latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.  相似文献   

8.
We present a study of the relationship between integral area and corresponding total magnetic flux for solar active regions. It is shown that some of these relationships are satisfied to simple power laws. Fractal examination showed that some of these power laws can not be justified inside the simple models of stationary magnetic flux tube aggregation. All magnetic fluxes and corresponding areas were calculated using the data measured with the Solar Magnetic Field Telescope of the Huairou Solar Observing Station in Beijing.  相似文献   

9.
对3个超级活动区(大的δ型黑子群)NOAA 5395、6659、6891中的电流分布作了系统计算;利用已发表的计算方法,首次用于实际活动区的水平电流分布;给出了电流与耀斑核的关系。将这种关系分为两类:密切相关和准相关,并同时给出了统计结果。结果显示:1)对于垂直电流和水平电流来说,密切相关率分别是29%和10%,准相关率分别是50%和30%;2)有些耀斑核与两种电流都相关,而大多数只与其中一种相关;3)与两种电流都不相关的耀斑核只占6%左右;4)两种电流起互补作用,因而对于预报耀斑具有一定的作用。通过分析还发现,磁场剪切强的地方相应于强的垂直电流,而磁中性线附近纵向磁场梯度大的地方相应于强的水平电流。  相似文献   

10.
We present a new sub-class of type Ⅲ solar radio burst at the high frequencies around 6.0 GHz. In addition to a descending and an ascending branch on the dynamic spectrum, it has an inverted morphology different from the simpletype U-burst. We call it “partial N-burst“ because it is interpreted as the known N-burst minus its first branch. The partial N-burst presented here was detected among a reverse slope type Ⅲ (RS-Ⅲ) burst group prior to the type V solar radio continuum and was simultaneously recorded by two spectrometers at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, 5.20-7.60 GHz) and at Purple Mountain Observatory (PMO, 4.50-7.50 GHz) on 1999 August 25.After the N-burst and M-burst, the partial N-burst is a third piece of evidence for a magnetic mirror effect in solar radio observation, when the same electron is reflected at a pinched foot of a flare loop.  相似文献   

11.
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss  相似文献   

12.
To acquire Stokes profiles from observations of a simple sunspot with the Video Vector Magnetograph at Huairou Solar Observing Station (HSOS), we scanned the FeI λ5324.19A line over the wavelength interval from 150mA redward of the line center to 150 mA blueward, in steps of 10 mA. With the technique of analytic inversion of Stokes profiles via nonlinear least-squares, we present the calibration coefficients for the HSOS vector magnetic magnetogram. We obtained the theoretical calibration error with linear expressions derived from the Unno-Becker equation under weak-field approximation.  相似文献   

13.
We present simultaneous observations of three recurring jets in EUV and soft X-ray (SXR), which occurred in an active region on 2007 June 5. By comparing their morphological and kinematic characteristics in these two different wavelengths, we found that EUV and SXR jets had similar locations, directions, sizes and velocities. We also analyzed their spectral properties by using six spectral lines from the EUV Imaging Spectrometer (EIS) onboard Hinode and found that these jets had temperatures from 0.05 to 2....  相似文献   

14.
15.
A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1  bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.  相似文献   

16.
Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other in- struments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole mag- netic structures. By examining the evolutions of the magnetic polarities of sources (17GHz), we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.  相似文献   

17.
Solar cycle according to mean magnetic field data   总被引:1,自引:0,他引:1  
To investigate the shape of the solar cycle, we have performed a wavelet analysis of the large–scale magnetic field data for 1960–2000 for several latitudinal belts and have isolated the following quasi-periodic components: ∼22, 7 and 2 yr. The main 22-yr oscillation dominates all latitudinal belts except the latitudes of ±30° from the equator. The butterfly diagram for the nominal 22-yr oscillation shows a standing dipole wave in the low-latitude domain  (∣θ∣≤ 30°)  and another wave in the sub-polar domain  (∣θ∣≥ 35°)  , which migrates slowly polewards. The phase shift between these waves is about π. The nominal 7-yr oscillation yields a butterfly diagram with two domains. In the low-latitude domain  (∣θ∣≤ 35°)  , the dipole wave propagates equatorwards and in the sub-polar region, polewards. The nominal 2-yr oscillation is much more chaotic than the other two modes; however the waves propagate polewards whenever they can be isolated.
We conclude that the shape of the solar cycle inferred from the large-scale magnetic field data differs significantly from that inferred from sunspot data. Obviously, the dynamo models for a solar cycle must be generalized to include large-scale magnetic field data. We believe that sunspot data give adequate information concerning the magnetic field configuration deep inside the convection zone (say, in overshoot later), while the large-scale magnetic field is strongly affected by meridional circulation in its upper layer. This interpretation suggests that the poloidal magnetic field is affected by the polewards meridional circulation, whose velocity is comparable with that of the dynamo wave in the overshoot layer. The 7- and 2-yr oscillations could be explained as a contribution of two sub-critical dynamo modes with the corresponding frequencies.  相似文献   

18.
Three Super Active Regions in the Descending Phase of Solar Cycle 23   总被引:2,自引:0,他引:2  
We analyze the magnetic configurations of three super active regions, NOAA 10484, 10486 and 10488, observed by the Huairou Multi-Channel Solar Telescope (MCST) from 2003 October 18 to November 4. Many energetic phenomena, such as flares (including a X-28 flare) and coronal mass ejections (CMEs), occurred during this period. We think that strong shear and fast emergence of magnetic flux are the main causes of these events. The question is also of great interest why these dramatic eruptions occurred so close together in the descending phase of the solar cycle.  相似文献   

19.
With an extensive analysis,we study the temporal evolution of magnetic flux during three successive M-class flares in two adjacent active regions:NOAA 10039 and 10044.The primary data are full disk longitudinal magnetograms observed by SOHO/MDI.All three flares are observed to be accompanied by magnetic flux changes.The changes occurred immediately or within 1 ~ 10 minutes after the starting time of the flares,indicating that the changes are obvious consequences of the solar flares.Although changes in many ...  相似文献   

20.
We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere, the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) T  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号