首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
右江盆地晚古生代-三叠纪盆地转换及其构造意义   总被引:11,自引:0,他引:11  
右江盆地是在南华加里东造山带夷平的基础上经再次裂陷形成的,它的形成与金沙江—红河—马江洋盆关系密切,是该洋盆与扬子板块之间的大陆边缘盆地。早泥盆世晚期—石炭纪随着金沙江—红河—马江洋盆的形成,扬子板块南部边缘开始裂陷,形成特殊的台地与台间海槽相间的大陆边缘裂谷盆地。二叠纪—早三叠世初期随着该洋盆的俯冲消减,形成越北岛弧,右江盆地进入弧后(裂陷)盆地阶段。早三叠世晚期以后,随着该洋盆的闭合和碰撞造山,在红河—马江造山带与扬子板块之间形成以复理石为特征的弧后前陆盆地。因此右江盆地经历了大陆边缘裂谷盆地(早泥盆世晚期—石炭纪)、弧后盆地(二叠纪—早三叠世早期)、弧后前陆盆地(早三叠世晚期—中三叠世)的构造演化阶段。  相似文献   

2.
The main differences and similarities between the tectonic features of the Urals and the Tien Shan are considered. In the Neoproterozoic and Early and Middle Paleozoic, the Ural and Turkestan oceanic basins were parts of one oceanic domain, with several distinct regions in which tectonic events took different courses. The Baltic continental margin of the Ural paleoocean was active, whereas the Tarim-Alay margin of the Turkestan ocean, similar in position, was passive. The opposite continental margin in the Urals is known beginning from the Devonian as the Kazakh-Kyrgyz paleocontinent. In the Tien Shan, a similar margin developed until the Late Ordovician as the Syr Darya block with the ancient continental crust. In the Silurian, this block became a part of the Kazakh-Kyrgyz paleocontinent. The internal structures of the Ural and Turkestan paleooceans were different. The East Ural microcontinent occurred in the Ural paleoocean during the Early and Middle Paleozoic. No microcontinents are established in the Turkestan oceanic basin. Volcanic arcs in the Ural paleoocean were formed in the Vendian (Ediacarian), at the Ordovician-Silurian boundary, and in the Devonian largely along the Baltic margin at different distances from its edge. In the Turkestan paleoocean, a volcanic arc probably existed in the Ordovician at its Syr Darya margin, i.e., on the other side of the ocean in comparison with the Urals. The subduction of the Turkestan oceanic crust developed with interruptions always in the same direction. The evolution of subduction in the Urals was more complicated. The island arc-continent collision occurred here in the Late Devonian-Early Carboniferous; the continent-continent collision took place in the Moscovian simultaneously with the same process in the Tien Shan. The deepwater flysch basins induced by collision appeared at the Baltic margin in the Famennian and Visean, whereas in the Bashkirian and Moscovian they appeared at the Alay-Tarim margin. In the Devonian and Early Carboniferous, the Ural and Turkestan paleooceans had a common active margin along the Kazakh-Kyrgyz paleocontinent. The sudduction of the oceanic crust beneath this paleocontinent in both the Urals and the Tien Shan started, recommenced after interruptions, and finally ceased synchronously. In the South Ural segment, the Early Carboniferous subduction developed beneath both Baltica and the Kazakh-Kyrgyz paleocontinent, whereas in the Tien Shan, it occurred only beneath the latter paleocontinent. A divergent nappe-fold orogen was formed in the Urals as a result of collision of the Kazakh-Kyrgyz paleocontinent with the Baltic and Alay-Tarim paleocontinents, whereas a unilateral nappe-fold orogen arose in the Tien Shan. The growth of the high divergent orogen brought about the appearance of the Ural Foredeep filled with molasse beginning from the Kungurian. In the Tien Shan, a similar foredeep was not developed; a granitic axis similar to the main granitic axis in the Urals was not formed in the Tien Shan either.  相似文献   

3.
孟加拉湾位于印度大陆以东、缅甸-安达曼-苏门答腊以西、孟加拉国南部海上地区,该区存在主动和被动两种不同类型的大陆边缘,并发育众多大陆边缘含油气盆地。根据板块位置和构造特征将其划分为三大类,分别是:被动大陆边缘盆地(马哈纳迪、K-G和高韦里盆地);主动大陆边缘盆地(若开、缅甸中央、马达班、安达曼和北苏门答腊盆地);残留洋盆地(孟加拉盆地)。根据火山岛弧带分布情况进一步将主动大陆边缘盆地划分为:①海沟型——若开盆地;②弧前型——缅甸中央盆地;③弧后型——马达班、安达曼和北苏门答腊盆地。对这些盆地油气勘探情况的统计与分析表明,该区大陆边缘盆地的油气分布主控因素为:烃源岩类型与有机质丰度决定了流体性质与资源强度;大型河流—三角洲形成富油气区;盆地类型、性质及晚期构造活动强度决定区带勘探潜力。  相似文献   

4.
滇西泥盆纪——三叠纪盆—山转换过程与特提斯构造演化   总被引:6,自引:0,他引:6  
谭富文  潘桂棠  王剑 《矿物岩石》2001,21(3):179-185
滇西地区以昌宁-连缝合带为古特提斯主洋闭合的位置。晚古生代-中生代时期古特提斯经历了一次盆转山和山控盆演变序列的全过程,可大致划分为4个发展阶段:(1)洋盆扩张阶段(D-C2)。古特提斯洋西侧的保山地块属冈瓦纳古陆的东缘,为非火山型被动大陆边缘;东侧的思茅地块属扬子地块的西缘部分,为火山型被动大陆边缘。(2)洋-陆汇阶段(C3-P2)。昌宁-孟连洋向东俯冲消减,思茅地区转化为弧后扩张盆地;墨江一带形成弧后扩张洋盆,思茅地块从扬子西缘分离。(3)弧-陆碰撞阶段(T1-T3),古特提斯主洋及分支洋盆相继关闭,全区发生大规模的造山升隆,前期的盆转山过程转入山控盆阶段,在哀牢山两侧分别形成了受造山作用控制的兰坪-思茅弧后前陆盆地和楚雄周缘前陆盆地。(4)陆-陆碰撞阶段(J1-K),滇西前陆盆地向陆内拗陷盆地转变,造山带的控盆作用结束。  相似文献   

5.
中甸晚三叠世图姆沟组岩石化学与构造环境   总被引:9,自引:0,他引:9  
黄建国  张留清 《云南地质》2005,24(2):186-192
本文对中甸东部晚三叠世图姆沟组深水浊积岩和弧火山岩、微量和稀土元素进行研究,投点多落入再旋回造山带物源区;微量和稀土元素与图解中多接近大陆岛弧区;常量元素分析与相关图解接近活动大陆边缘和大陆岛弧环境,与火山岩的大地构造环境具有相同的结论。图姆沟组为甘孜—理塘洋盆向西俯冲消减,中甸褶皱带东缘由被动大陆边缘转化为活动大陆边缘过程中形成的岛弧火山—沉积岩系。  相似文献   

6.
The formation, development and evolution of the Qinling erogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0-1.6 Ga), (2) plate evolution (0.8-0.2 Ga), and (3) intracontinental orogeny and tectonic evolution in the Mesozoic.The Devonian (D) and Triassic (T) were the key transition period of the tectonic evolution of the Qinling orogenic belt. That is to say, in the Devonian, the Qinling micro-plate was separated from the northern margin of the Yangtze plate (passive continental margin). This period witnessed transition of the micro-plate from the compressional to ex-tensional state, and consequently three types of sedimentary basins were formed, namely, the rift hydrothermal basin in the micro-plate, restricted ocean basin in the south, and residual ocean basin resulting from collision on the northern margin. In the Triassic the Qinling area was turned into the intracontinental orogen.The Devonian and Triassic w  相似文献   

7.
金沙江造山带的大地构造环境及演化模式   总被引:9,自引:0,他引:9  
金沙江造山带一直被当作古板块缝合带,但其物质组成和结构并不反映当时典型的洋盆环境,主要证据有:(1)沉积地层表明,金沙江海盆在规模和水体深度两方面都是有限的;(2)所产的火山岩与标准洋中脊不同,其岩石化学特点与弧后盆地相吻合;(3)澜沧江洋盆与金沙江海盆隔着昌都长条形地块相向俯冲,而且金沙江海盆的俯冲始于澜沧江洋的闭合。据此提出金沙江造山带的弧后盆地演化模式,认为自西而东的澜沧江带、昌都地块、金沙江带、扬子板块分别代表洋盆和海沟、岛弧、弧后盆地、大陆板块等构造单元,构成一个完整的大陆边缘。  相似文献   

8.
古亚洲洋不是西伯利亚陆台和华北地台间的一个简单洋盆,而是在不同时间、不同地区打开和封闭的多个大小不一的洋盆复杂活动(包括远距离运移)的综合体.其北部洋盆起始于新元古代末-寒武纪初(573~522Ma)冈瓦纳古陆裂解形成的寒武纪洋盆.寒武纪末-奥陶纪初(510~480Ma),冈瓦纳古陆裂解的碎块、寒武纪洋壳碎块和陆缘过渡壳碎块相互碰撞、联合形成原中亚-蒙古古陆.奥陶纪时,原中亚-蒙古古陆南边形成活动陆缘,志留纪形成稳定大陆.泥盆纪初原中亚-蒙古古陆裂解,裂解的碎块在新形成的泥盆纪洋内沿左旋断裂向北运动,于晚泥盆世末到达西伯利亚陆台南缘,重新联合形成现在的中亚-蒙古古陆.晚古生代时,在现在的中亚-蒙古古陆内发生晚石炭世(318~316Ma)和早二叠世(295~285Ma)裂谷岩浆活动,形成双峰式火山岩和碱性花岗岩类.蒙古-鄂霍次克带是西伯利亚古陆和中亚-蒙古古陆之间的泥盆纪洋盆,向东与古太平洋连通,洋盆发展到中晚侏罗世,与古太平洋同时结束,其洋壳移动到西伯利亚陆台边缘受阻而向陆台下俯冲,在陆台南缘形成广泛的陆缘岩浆岩带,从中泥盆世到晚侏罗世都非常活跃.古亚洲洋的南部洋盆始于晚寒武世.此时,华北古陆从冈瓦纳古陆裂解出来,在其北缘形成晚寒武世-早奥陶世的被动陆缘和中奥陶世-早志留世的沟弧盆系.志留纪腕足类生物群的分布表明,华北地台北缘洋盆与塔里木地台北缘、以及川西、云南、东澳大利亚有联系,而与上述的古亚洲洋北部洋盆没有关连,两洋盆之间有松嫩-图兰地块间隔.晚志留世-早泥盆世,华北地台北部发生弧-陆碰撞运动,泥盆纪时,在松嫩地块南缘形成陆缘火山岩带,晚二叠世-早三叠世华北地台与松嫩地块碰撞,至此古亚洲洋盆封闭.古亚洲洋的南、北洋盆最后的褶皱构造,以及与塔里木地台之间发生的直接关系,很可能是后期的构造运动所造成的.  相似文献   

9.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   

10.
祁漫塔格造山带——青藏高原北部地壳演化窥探   总被引:2,自引:0,他引:2  
祁漫塔格是东昆仑造山带的一个分支,位于青藏高原中北部,夹持于柴达木盆地和库木库里盆地中间,向西被阿尔金走滑断裂错段。从元古代到早中生代,由于受到多期、多阶段大洋俯冲和关闭影响,导致不同地体间发生碰撞拼贴和大陆增生过程,并由此引发一系列的岩浆事件。祁漫塔格造山带内发育新元古代花岗岩(1000~820 Ma)是对Rodinia超大陆形成的响应。以阿达滩和白干湖逆冲断裂为界,划分为南、北祁漫塔格两地体。北祁漫塔格地体作为活动大陆边缘,发育大量的早古生代与俯冲有关的花岗岩和VA型蛇绿岩;南祁漫塔格地体最初为洋内俯冲形成的原始大洋岛弧,发育早古生代SSZ型蛇绿岩、岛弧拉斑玄武岩和钙碱性火山岩。随着持续俯冲,年轻岛弧伴伴随地壳加厚转变为成熟岛弧。南、北祁漫塔格地体间的碰撞(弧-陆碰撞)可能发生在晚志留世(422Ma),并持续到早泥盆世(398Ma)。在此期间(422~389Ma),南祁漫塔格地体内发育一系列同碰撞型花岗岩;北祁漫塔格地体内发育一系列的大洋岛弧花岗岩。南祁漫塔格作为外来地体,碰撞拼贴对于大陆边缘、大陆增生意义重大。之后,南、北祁漫塔格地体进入后碰撞环境并发育一系列板内花岗岩。此外,伸展导致造山带垮塌,发育中泥盆统磨拉石建造。碰撞使得海沟后退,海沟阻塞导致俯冲减弱甚至停止,因而产生了石炭-二叠纪(357~251 Ma)岩浆活动缺口。古特提斯祁漫塔格洋的最终关闭可能始于晚二叠世,使得库木库里微板块拼贴于大陆边缘;碰撞抬升导致缺失上二叠统-中三叠统地层。早中三叠世(251~237 Ma)由于碰撞,俯冲大洋板片回转,之后断离,软流圈地幔物质沿岩石圈地幔通道上涌,使得新生下地壳部分熔融;到了晚三叠世,大规模岩石圈地幔和下地壳物质拆沉,导致古老地壳物质发生熔融,形成了一系列后碰撞背景下的钙碱性和碱性花岗岩。  相似文献   

11.
五十年前板块构造理论的诞生是地球科学领域的一场革命,它为理解地球如何运作构建了基本框架。过去五十年对该理论的进一步研究告诉我们地质过程最终都是地球热损失的结果。例如,大洋岩石圈板块在洋中脊形成,其运动和增生以及最终通过俯冲带进入地幔导致地幔冷却降温,从而导致大规模的地幔对流。亦即,板块构造的直接驱动力是俯冲大洋岩石圈板块的下沉力。因此,没有俯冲带就没有板块构造,但是俯冲带如何开始仍然有争议。对俯冲起始的研究从未中断,有数值模拟也有地质推断。2014年在西太平洋用三个IODP航次(350、351和352)来检验“自发”和“诱发”俯冲开始的想法。所有这些努力都值得肯定,但这些是无法检验的想法。无法检验意味着没有结果。本文介绍至今唯一可用地质学方法检验的假说,亦即“岩石圈内横向物质组成差异导致的浮力差是俯冲带形成的起因”。这种浮力差位于海底高原的边部和被动大陆边缘,因此这些部位是未来俯冲带起始的必然轨迹。在远离这些部位的正常洋盆内因缺乏浮力差而俯冲带不可能起始。换句话说,“所有岛弧一定有大陆(或海底高原)基底”,这可以通过采集和研究岛弧基底岩石来验证。  相似文献   

12.
Mantle peridotites from the Western Pacific   总被引:1,自引:0,他引:1  
We review petrographical and petrological characteristics of mantle peridotite xenoliths from the Western Pacific to construct a petrologic model of the lithospheric mantle beneath the convergent plate boundary. The peridotite varies from highly depleted spinel harzburgite of low-pressure origin at the volcanic front of active arcs (Avacha of Kamchatka arc and Iraya of Luzon–Taiwan arc) to fertile spinel lherzolite of high-pressure origin at the Eurasian continental margin (from Sikhote-Alin through Korea to eastern China) through intermediate lherzolite–harzburgite at backarc side of Japan island arcs. Oxygen fugacity recorded by the peridotite xenoliths decreases from the frontal side of arc to the continental margin. The sub-arc type peridotite is expected to exist beneath the continental margin if accretion of island arc is one of the important processes for continental growth. Its absence suggests replacement by the continental lherzolite at the region of backarc to continental margin. Asthenospheric upwelling beneath the continental region, which has frequently occurred at the Western Pacific, has replaced depleted sub-cratonic peridotite with the fertile spinel lherzolite. Some of these mantle diapirs had opened backarc basins and strongly modified the lithospheric upper mantle by metasomatism and formation of Group II pyroxenites.  相似文献   

13.
The Vendian (Baikalian), Late Devonian (Ellesmerian), and Mid-Cretaceous (Brookian) orogenies were three cardinal events in the history of formation and transformation of the continental crust in the eastern Arctic region. The epi-Baikalian Hyperborean Craton was formed by the end of the Vendian (660–550 Ma), when the Archean-Proterozoic Hyperborean continental block was built up by the Baikalian orogenic belt and concomitant collision granitoids. As judged from the localization of deepwater facies, the Early Paleozoic ocean occupied the western part of the Canadian Arctic Archipelago, western Alaska, and the southern framework of the Canada and Podvodnikov basins and was connected with the Iapetus ocean. The closure of the Early Paleozoic Arctic basins is recorded in two surfaces of structural unconformities corresponding to the pre-Middle Devonian Scandian orogenic phase and the Late Devonian Ellesmerian Orogeny; each tectonic phase was accompanied by dislocations and metamorphism. The Ellesmerian collision was crucial in the Caledonian tectogenesis. The widespread Late Devonian-Mississippian rifting probably was a reflection of postorogenic relaxation. As a result, the vast epi-Caledonian continental plate named Euramerica, or Laurussia, was formed at the Devonian-Carboniferous boundary. The East Arctic segment of this plate is considered in this paper. In the Devonian, the Angayucham ocean, which was connected with the Paleoasian and Uralian oceans [62], separated this plate from the Siberian continent. The South Anyui Basin most likely was a part of this Paleozoic oceanic space. The shelf sedimentation on the epi-Caledonian plate in the Carboniferous and Permian was followed by subsidence and initial rifting in the Triassic and Jurassic, which further gave way to the late Neocomian-early Albian spreading in the Canada Basin that detached the Chukchi Peninsula-Alaska microplate from the continental plate [25]. The collision of this microplate with the Siberian continent led to the closure of the South Anyui-Angayucham ocean and the development of the Mid-Cretaceous New Siberian-Chukchi-Brooks Orogenic System that comprised the back Chukchi Zone as a hinterland and the frontal New Siberian-Wrangel-Herald-Lisburne-Brooks Thrust Zone as a foreland; the basins coeval with thrusting adjoined the foreland. Collision started in the Late Jurassic; however, the peak of the orogenic stage fell on the interval 125–112 Ma, when ophiolites had been obducted on the margin of the Chukchi Peninsula-Alaska microplate along with folding and thrusting accompanied by an increase in the crust’s thickness, amphibolite-facies metamorphism, and growth of granite-gneiss domes. The magmatic diapir of the De Long Arch that grew within the continental plate in the Mid-Cretaceous reflected a global pulse of the lower mantle upwelling that coincided with the maximum opening of the Canada Basin. The present-day appearance of the eastern Arctic region arose in the Late Mesozoic and Cenozoic owing to the opening of the Amerasia and Eurasia oceans. Sedimentary basins of various ages and origins—including the Late Devonian-Early Carboniferous grabens, the spatially coinciding Late Jurassic-Early Cretaceous rifts related to the opening of the Canada Basin, the syncollision basins in front of the growing orogen, and the Cretaceous-Cenozoic basins coeval with strike-slip faulting and rifting at the final stages of orogenic compression and during the opening of the Eurasia ocean were telescoped on sea shelves.  相似文献   

14.
北山地区早古生代板块构造特征   总被引:35,自引:2,他引:35       下载免费PDF全文
位于甘肃省西北边界和内蒙古自治区西端的北山地区,早古生代大地构造单元由塔里木板块东段北缘和北侧贝加尔期分裂出来的旱山微板块组成,其间被石板井-小黄山蛇绿混杂岩带所分隔。在漫长的构造演化进程中发育有蛇绿岩带。同时,经历了大西洋型、安第斯型(?)和西太平洋型大陆边缘的演化阶段,陆壳增厚,地壳成熟度增加,由大洋地壳和过渡型地壳向大陆型地壳转化。晚古生代初,全区进入板内活动时期。  相似文献   

15.
A radiochemical N.A.A. method was used to obtain new values on W distribution in some 125 volcanic rocks, mainly basalts and andesites, from different petrotectonic environments.These W data are below previously reported abundances. New median values in various types of rocks are suggested (ppm W). Basalts: ocean floor, 0.15; ocean islands subalkaline, 0.28; ocean islands alkaline, 0.60; island arc, 0.19: continental margin, 0.40; continental subalkaline, 0.30: continental alkaline, 1.35. Andesites: island arc, 0.23; continental margin, 1.05.Median values for all 91 basalts and all 20 andesites are 0.36 and 0.29 ppm respectively.  相似文献   

16.
李锦铁 《地质学报》2001,75(1):25-34
古陆碰撞继之为海洋盆地关闭、山脉隆起和前陆盆地巨厚碎屑岩系的堆积。造山带的前陆地区,前身是被动陆,构造上位于较低的部位,其地质记录可以保存得相对完整。长江中下游地区,是大别造山带的前陆构造带。通过对那里沉积物形成环境,特别是物源区的分析研究,识别出震旦系至下三叠统被动陆缘沉积岩系和中三叠统至中侏罗统前陆盆地沉积岩系,据此推测大别造山带碰撞造山作用发生在中三叠世。早三叠世被动陆缘岩系和前陆盆地堆积物的空间分布,揭示出中朝与扬子两个地板之间的碰撞方式,在长江中下游地区从东到西基本是同时的。  相似文献   

17.
The Coffs Harbour Association, New England Orogen, consists of thick, monotonous units of Late Palaeozoic greywacke, laminated siltstone and mudstone, and massive argillite. The rocks of the association have a common provenance, being derived predominantly from a volcanic arc source consisting of mainly dacite, with minor andesite and rhyolite. The Coramba beds in the Coffs Harbour Block are divided into four petrofacies based on QFL data and the occurrence of detrital hornblende. Upwards, the petrofacies are: A—volcanolithic, B—feldspathic, C—horn‐blende‐feldspathic, D—hornblende‐volcanolithic. The petrofacies and vertical variation in non‐volcanic detritus indicate minor erosion and exposure of a non‐volcanic source, followed first by recommencement of volcanism, penecontemporaneously with sedimentation, then further erosion of the non‐volcanic source area. There was little temporal change in the character of volcanic detritus shed from the source area. Equivalents of the four petrofacies are recognised in other blocks of the association, although because of structural complexity, a complete A‐D sequence has not been found. The Coffs Harbour sandstones are similar to sands in modern ocean basins derived from an arc system of either continental margin or island arc type. The sandstones are not similar to recycled orogenic provenances, such as found in accretionary prisms or trench‐slope basins; the compositions suggest that the sandstones were deposited in either a forearc or backarc setting.  相似文献   

18.
Cathy Busby   《Tectonophysics》2004,392(1-4):241
Mesozoic rocks of the Baja California Peninsula form one of the most areally extensive, best-exposed, longest-lived (160 my), least-tectonized and least-metamorphosed convergent-margin basin complexes in the world. This convergent margin shows an evolutionary trend that may be typical of arc systems facing large ocean basins: a progression from highly extensional (phase 1) through mildly extensional (phase 2) to compressional (phase 3) strain regimes. This trend is largely due to the progressively decreasing age of lithosphere that is subducted, which causes a gradual decrease in slab dip angle (and concomitant increase in coupling between lower and upper plates), as well as progressive inboard migration of the arc axis.This paper emphasizes the usefulness of sedimentary and volcanic basin analysis for reconstructing the tectonic evolution of a convergent continental margin. Phase 1 consists of Late Triassic to Late Jurassic oceanic intra-arc to backarc basins that were isolated from continental sediment sources. New, progressively widening basins were created by arc rifting and sea floor spreading, and these were largely filled with progradational backarc arc-apron deposits that record the growth of adjacent volcanoes up to and above sea level. Inboard migration of the backarc spreading center ultimately results in renewed arc rifting, producing an influx of silicic pyroclastics to the backarc basin. Rifting succeeds in conversion of the active backarc basin into a remnant backarc basin, which is blanketed by epiclastic sands.Phase 1 oceanic arc–backarc terranes were amalgamated by Late Jurassic sinistral strike slip faults. They form the forearc substrate for phase 2, indicating inboard migration of the arc axis due to decrease in slab dip. Phase 2 consists of Early Cretaceous extensional fringing arc basins adjacent to a continent. Phase 2 forearc basins consist of grabens that stepped downward toward the trench, filled with coarse-grained slope apron deposits. Phase 2 intra-arc basins show a cycle of (1) arc extension, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions, followed by (2) arc rifting, characterized by widespread dike swarms and extensive mafic lavas and hyaloclastites. This extensional-rifting cycle was followed by mid-Cretaceous backarc basin closure and thrusting of the fringing arc beneath the edge of the continent, caused by a decrease in slab dip as well as a possible increase in convergence rate.Phase 2 fringing arc terranes form the substrate for phase 3, which consists of a Late Cretaceous high-standing, compressional continental arc that migrated inboard with time. Strongly coupled subduction resulted in accretion of blueschist metamorphic rocks, with development of a broad residual forearc basin behind the growing accretionary wedge, and development of extensional forearc (trench–slope) basins atop the gravitationally collapsing accretionary wedge. Inboard of this, ongoing phase 3 strongly coupled subduction, together with oblique convergence, resulted in development of forearc strike-slip basins upon arc basement.The modern Earth is strongly biased toward long-lived arc–trench systems, which are compressional; therefore, evolutionary models for convergent margins must be constructed from well-preserved ancient examples like Baja California. This convergent margin is typical of many others, where the early to middle stages of convergence (phases 1 and 2) create nonsubductable arc–ophiolite terranes (and their basin fills) in the upper plate. These become accreted to the continental margin in the late stage of convergence (phase 3), resulting in significant continental growth.  相似文献   

19.
The type of convergent boundaries forming in the area of mantle plumes is considered. These convergent boundaries (West Pacific type) are characteristic of the western margin of the Pacific. West Pacific-type boundaries are a regular succession of structures from ocean to continent: island arcs, marginal basins, rift basins, and associated OIB-type volcanics at the continental edge. The convergence zones are up to a thousand kilometers wide.Studies of the history of the part of the Central Asian Fold Belt forming the folded periphery of the Siberian continent have shown that the continent drifted above the African plume or corresponding low-velocity mantle province for most of the Phanerozoic (up to the Early Mesozoic inclusive). This fact determined the West Pacific type of convergent boundaries for the accretionary structures of the Central Asian Fold Belt. The drift of Siberia from African to Pacific province in the Late Cenozoic determined the structure and development of the convergent boundary in the western Pacific, including extensive intraplate magmatism in continental Asia in the Late Mesozoic and Cenozoic.  相似文献   

20.
Three sources of stress at active (Andean) continental margins are considered: body forces on the plates which drive their motion, thermal stresses generated within the cooling lithosphereand bending stresses due to the flexure of the lithosphere at an ocean trench. It is argued that the bending stresses dominate. The evolution of passive (Atlantictype) continental margins is also considered. Models for the free and locked flexure of the continental and oceanic lithosphere are given. Based on observed gravity anomalies, it is argued that the continental margin fault system must remain active throughout much of the evolution of the margin. These displacements accommodate both the subsidence of the oceanic lithosphere due to its cooling and thickeningand the sedimentary loading. This loading may be responsible for the seismicity on the eastern continental margin of the United States e.g., the Charleston, South Carolina earthquake of 1884.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号