首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-infrared (FIR), submillimetre or millimetre continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, FIR continuum data from the COBE /Diffuse Infrared Background Experiment (DIRBE) instrument and Nagoya 4-m  13CO  J = 1 → 0  spectral line data were used to plot  240 μm/13CO  J = 1 → 0  intensity ratios against 140/240 μm dust colour temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion A and B molecular clouds.
The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large scale (i.e. ∼1 kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that vary from one sightline to another. The models require a dust–gas temperature difference of 0 ± 2 K and suggest that 40–50 per cent of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10 K. The implications are discussed in detail in later papers and include stronger dust–gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, and an improved explanation for the N (H2)/ I (CO) conversion factor. It is emphasized that these results are preliminary and require confirmation by independent observations and methods.  相似文献   

2.
Molecular spectral lines have provided information about interstellar clouds for six and a half decades. Here we consider results of spectral line surveys made with the James Clerk Maxwell Telescope over the frequency range 455.1 to 507.4 Ghz. The targets of the surveys are the Orion core and the Galactic centre. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We discuss how the combination of polarimetry and ion-to-neutral molecular line width ratio measurements permits the determination of the magnitude and orientation of the magnetic field in the weakly ionized parts of molecular clouds. Polarimetry measurements give the field orientation in the plane of the sky and the ion-to-neutral molecular line width ratio determines the angle between the magnetic field and the line of sight. We show the first results obtained with this technique on the M17 and Orion A star-forming region using Hertz 350 μm polarimetry maps and HCO+-to-HCN molecular line width ratios to provide the first view of the spatial orientation of the magnetic field these molecular clouds.  相似文献   

4.
We have used observations of the rare isotopes of HCN and HNC to determine the relative abundance of these two chemical isomers along the central ridge of the Orion molecular cloud. The abundance ratio [HCN]/[HNC] decreases by more than an order of magnitude from the relatively warm plateau and hot core sources toward the KL nebula to the colder, more quiescent clouds to the north and south. Even in the cooler regions, however, the ratio is an order of magnitude larger than that found in previous investigations of cold dark clouds. We determine the kinetic temperature in the regions we have studied from new observations of methylacetylene (CH3CCH), together with other recent estimates of the gas temperature near KL. The results suggest that the warmer portions of the cloud are dominated by different chemical pathways than those in the general interstellar cloud material.  相似文献   

5.
The J = 2-1 transition of SiO has been searched for toward both hot and cold molecular gas. SiO was not detected toward the dark clouds TMC-1, L134 N, and B335, down to column density upper limits of N < 2-4 x 10(10) cm-2. The species, however, has been observed toward all sources with a kinetic temperature greater than or equal to 30 K, with the largest column densities (N approximately 10(13)-10(17) cm-2) measured in the warmest (TK > or = 100 K) material. The abundance of SiO, relative to HCN, is found to be approximately 0.1-1 in the massive star-forming regions toward Orion and NGC 7538; toward the dark clouds, the upper limits to this ratio is less than 0.0002-0.004. A similar enhancement in the warmer regions is reflected in the SiO/H2 ratio as well. A linear relation was found between the natural log of the SiO concentration and 1/TK, suggesting that the species' formation involves a chemically specific process that contains an activation barrier of approximately 90 K. SiO was also found to be underabundant with respect to SO in cold clouds, with SiO/SO < 1/1000, versus SiO/SO > or =, measured in Orion-KL. The formation of SiO is therefore linked closely to the local gas kinetic temperature, rather than the oxygen abundance, and its synthesis is likely to involve high-temperature gas-phase reactions. The species thus may serve as an unambiguous indicator of high-temperature or "shock" chemistry.  相似文献   

6.
Interstellar hydrogen sulfide (H2S) and its isotopic variant (H2(34)S) have been observed toward several positions in OMC-1 via their 1(10)-1(01) transitions near 168 GHz using the FCRAO 14 m telescope. We derive total column densities toward Orion(KL) for the extended ridge, for the plateau, and for the hot core, in addition to values for other positions in OMC-1. The fractional abundance of H2S (approximately 10(-9)) in the quiescent regions of OMC-1 seems to be difficult to explain by currently known ion-molecule reactions. The fractional abundance of H2S relative to H2 is enhanced by a factor of 1000 in the hot core and the plateau relative to the quiescent clouds. This enhancement may be a result of grain surface chemistry and/or of high-temperature gas-phase chemistry. From the nondetection of HDS in its 2(11)-2(12) transition, we estimate the abundance ratio [HDS]/H2S] < or = 0.02 in the hot core.  相似文献   

7.
We present echelle spectroscopy in the 3500- to 7060-... range for two positions of the Orion nebula. The data were obtained using the 2.1-m telescope at Observatorio Astronómico Nacional in San Pedro Mártir, Baja California. We have measured the intensities of about 220 emission lines, in particular 81 permitted lines of C+, N+, N++, O0, O+, Ne0, Si+, Si++ and S+, some of them produced by recombination only and others mainly by fluorescence. We have determined electron temperatures, electron densities and ionic abundances using different continuum and line intensity ratios. We derived the He, C and O abundances from recombination lines and find that the C/H and O/H values are very similar to those derived from B stars of the Orion association, and that these nebular values are independent of the temperature structure. We have also derived abundances from collisionally excited lines. These abundances depend on the temperature structure; accurate t 2 values have been derived comparing the O II recombination lines with the [O III ] collisionally excited lines. The gaseous abundances of Mg, Si and Fe show significant depletions, implying that a substantial fraction of these atoms is tied up in dust grains. The derived depletions are similar to those found in warm clouds of the Galactic disc, but are not as large as those found in cold clouds. A comparison of the solar and Orion chemical abundances is made.  相似文献   

8.
A fairly complete but limited set of gas phase reactions involving nitrogen-bearing molecules is linked to a simple model of grain surface reactions. Calculations are performed attempting to simulate the nitrogen chemistry in interstellar clouds of low and high density. While it appears probable that grain surface reactions contribute to the chemistry in both régimes, conclusive evidence awaits observational and theoretical developments.  相似文献   

9.
Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star-formation rates.  相似文献   

10.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   

11.
The reliability of modelling the far-infrared continuum to  13CO  J = 1 → 0  spectral line ratios applied to the Orion clouds (see previous paper in the series) on the scales of several parsecs (i.e. ∼7 pc) is tested by applying the models to simulated data. The two-component models are found to give the dust–gas temperature difference,  Δ T   , to within 1 or 2 K. However, other parameters like the column density per velocity interval and the gas density can be wrong by an order of magnitude or more. In particular, the density can be systematically underestimated by an order of magnitude or more. The overall mass of the clouds is estimated correctly to within a few per cent.
These results may permit us to reliably constrain estimates of the Orion clouds' physical parameters, based on the real observations of the far-infrared continuum and  13CO  J = 1 → 0  spectral line. Nevertheless, other systematics must be treated first. These include the effects of background/foreground subtraction, effects of the H  i component of the interstellar medium, and others. These will be discussed in a future paper.  相似文献   

12.
Based on the survey of emission-line stars in a wide field of the Orion star forming region, surface distributions of young stellar populations and gaseous clouds are compared as a whole in an attempt to make a speculation on the star formation process in this region. Existence of a primeval molecular cloud is suggested as the birth site of older members of emission-line stars and probably of X-ray detected pre-main sequence stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Recent observational evidence shows that low-mass stars were firstly formed in molecular clouds, and that, at a later stage when massive stars were formed, the formation rate of low mass stars was still high in the Orion nebula (this paper) but decreased rapidly in NGC 2264 (Adamset al., 1983). This difference is probably caused by the effects of mass ejection and luminous radiation from the stars which were born in the previous period.In this paper, we discuss examples of low mass stars in order to find a relationship between the age and location of stars.  相似文献   

14.
Laboratory measurements and calculations have been performed to determine the abundance ratio of the deuterated ethynyl radical (CCD) to the normal radical (CCH) which can be achieved in dense interstellar clouds via isotopic fractionation in the C2H2+ (HD) = C2HD+ (H2) system of reactions. According to this limited treatment, the CCD/CCH abundance ratio which can be attained is in the range 0.02-0.03 for the Orion molecular cloud and 0.01-0.02 for TMC-1. These ranges of numbers are in reasonable agreement with the observed values in Orion and TMC-1. However, the analysis of the CCD/CCH abundance ratio is complicated via the presence of competing fractionation mechanisms, especially in the low-temperature source TMC-1.  相似文献   

15.
The abundance of hydrogen chloride (HCl) in the Venus atmosphere was measured by ground-based IR spectroscopy. The dayside measurements were performed in May 2007 with a resolution of 40,000, and the nightside measurements in October 1999 with a resolution of 1000. The hemispheric distributions of the HCl mixing ratio measured above the Venus’ clouds show no significant structure with a disc-averaged value of 0.74±0.06 ppm which is in the similar range as the previous report of 0.6±0.2 ppm. The representative height for the dayside measurements is estimated to be 60-66 km. Recent results by Venus Express/SPICAV/SOIR show much smaller values of 0.1-0.2 ppm at 64-94 km; however the direct comparison is difficult due to the different spatial conditions. The hemispheric distributions of the 35Cl/37Cl isotope ratio are also found to show no significant structure with a disc-averaged value of 3.1±0.4 which coincides with the terrestrial value of 3.1. The HCl mixing ratios below the clouds are also found to show no significant structure with a disc-averaged value of 0.40±0.05 ppm, which is similar to the previous reports of 0.4-0.5 ppm. The larger HCl mixing ratio above the clouds than below suggests the production of HCl in the cloud region or above. Also, a uniform hemispherical distribution of H2O is found below the clouds with a disc-averaged mixing ratio of 25±5 ppm; this is in the same range as the previous measurements. Those uniform distributions of HCl and H2O support the fact that their chemical lifetimes are much longer than that of mixing as has been discussed so far.  相似文献   

16.
The photodissociation regions located between ionized regions and molecular clouds are studied by using a one-dimensional model where molecular H2 are formed on the dust grains, and destructed by photodissociation. The escape probability method is used for the line transfer. The excitation of infrared emission lines of H2 by UV fluorescence in M17, by shock heating in Orion KL and mainly by UV fluorescence in NGC 2023 are discussed.  相似文献   

17.
The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 and Polarimeter 2 on the James Clerk Maxwell Telescope. This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O   J = 3 → 2  towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all the three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a clumpfind analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.  相似文献   

18.
Dust grains respond to the physical and chemical conditions of the interstellar region in which they are embedded. The interaction produces an extinction curve which depends on the local environment and on the past history of the dust grains. In this work we present a theoretical study of the effects of radial variations of dust extinction properties on gas-phase chemistry in spherical core–halo clouds. We use observational constraints on the variation range of the extinction curve, and we analyse if the degree of dust environmental processing could be reflected by chemical signatures in the gas-phase molecular concentrations. The results of this work show that significant variations in the photodestruction rates and in the thermal profile of the cloud might induce chemical patterns otherwise excluded in the standard dense-cloud chemistry. Some discrepancies between observations and theoretical provisions are discussed in the light of the present results.  相似文献   

19.
We have re-examined the prospects of HOCl as an inert reservoir for atmospheric chlorine in the light of new theoretical calculations and available experimental measurements of its photodissociation cross-sections. The theoretical calculations and most recent laboratory studies imply that the broad maxima 3200 Å observed in two other experimental spectra may not belong to HOCl. On the basis of this implication HOCl could have a long lifetime against photodissociation in the stratosphere, and could, thereby, become a reservoir for atmospheric chlorine comparable to ClONO2 or even HCl. In this capacity HOCl could reduce the predicted ozone destruction due to any given level of total chlorine burden. We have also examined the difficulties in laboratory measurements of the HOCl absorption spectrum with particular emphasis on identifying the impurities which may be present in the experimental system. It appears that specialized new experiments are needed to clearly establish the nature and strength of HOCl absorption in the neighbourhood of 3200 Å. Some refinements in the theoretical calculations also seem desirable. In view of the difficulties involved in the laboratory determination of HOCl photodissociation cross-sections, it is suggested that a search for possible stratospheric HOCl by atmospheric spectroscopists would be worthwhile.  相似文献   

20.
The possibility that chlorine may deplete stratospheric chlorine has received considerable attention recently. The only termination steps considered up to now involve HCl formation by chlorine atom attack on hydrogen-bearing molecules. We propose that an important removal mechanism for chlorine in the stratosphere may be the formation of HClO4 via the sequence of steps Cl + O2 + O3 → ClO3 + O2 ClO3 + OH → HClO4. In addition to being produced as often as HCl, HClO4 may be more stable to radical attack and thus a more efficient sink than HCl for stratospheric chlorine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号