首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

2.
Florea LJ  Vacher HL 《Ground water》2007,45(4):439-446
Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous.  相似文献   

3.
Karst systems provide water for domestic and industrial uses and for generating hydropower, but they can also create fluvial hazards, such as upstream back‐flooding and downstream karst flash‐flood events. However, these hazards are difficult to foresee due to the complex recharge‐discharge processes as well as the lack of information on the inside of the system, which has often not been completely surveyed by speleologists or explored by boreholes. To overcome these difficulties, hydro‐chemical data from the monitoring system in the Middle Bussento Karst System (MBSKS), one of the first Experimental Karst Systems in southern Italy, were recorded and previously discussed. Based on shared background in flood karst hydraulic modeling, this paper describes the conceptual premises and rationale of a general‐purpose hydraulic model that is suitable both for the MBSKS and for other Mediterranean, multi‐recharge, mature, conduit‐dominated karst systems. To test the reliability of the model, simulations of time–space behavior and response are performed using natural and artificial flood pulses “as tracers”, considering a “pulse” as a significant variation in water quantity and/or quality. The results of the model explain the interactions between allogenic, autogenic, and anthropogenic recharges from differentiated sources and phreatic conduit systems. These results also clarify the overall response of karst springs at typical time scales of flood pulses. Table acronym name  相似文献   

4.
Discharge from karst springs contains a mixture of conduit and matrix water, but the variations in groundwater mixing are poorly known. Storm events present an opportunity to try to map flow components because water entering during storms is more dilute and provides a tracer as it mixes with pre‐event water along the flowpath from the recharge area to discharge at a spring. We used hysteresis plots of Mg/Ca ratios in a spring in the Cumberland Valley of Pennsylvania to map conduit (higher Ca) vs. diffuse (higher Mg) sources of recharge. We observed two types of temporal heterogeneity: within a storm event and from storm to storm. The timing of the variation in Mg/Ca suggested sources of mixing waters. An increase in the Mg/Ca ratio at the beginning of some storms while conductivity declined suggested diffuse recharge through the epikarst. The rapid changes in Mg/Ca ratios for low‐intensity events probably occurred as the rainfall waxed and waned and illustrate that a variety of flowpaths are available at this spring because additional flushing of Mg occurred. In contrast, the conductivity hysteresis began with dilute water initially and rotation was similar from storm to storm. Hysteresis plots of the Mg/Ca ratio have the potential of revealing more of the complexity in discharge than conductivity alone. A better understanding of flow components in karst is needed to protect these aquifers as a groundwater resource.  相似文献   

5.
The mean residence time (MRT) of karst groundwater in three mountainous catchments of the Western Himalaya was estimated using multiple approaches: the tritium method, the sine wave model and tracer tests. Water samples were collected from precipitation, glacier melt, streams and karst springs for δ2H and tritium analysis during 2012 and 2013. High tritium values were observed in winter precipitation and low values in summer precipitation. The variation of tritium in karst springs was similar to that of the streams, whereas glacier melt showed lower tritium values. The MRT of cold karst springs was shorter than that of warm karst springs. The tracer breakthrough curves (TBC) retrieved for different springs suggested a short travel time for groundwater and possibly conduit flow. Deterioration of water quality and variation in flux magnitude are the two main practical consequences of the short travel time of karst groundwater in the region.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

6.
As one of the largest international scientific pro- grams in geoscience and environmental science, global change studies were initiated in the early 1980s[1,2]. Noticeable achievements have been made in the stud- ies using indicators such as loess, marine sediment, permafrost, vermicular red earth, and even magmatic activity[2―6]. In recent years, the importance of ground- water as a new type of global change indicators has caused wide attention[7]. Stochastic, isotopic and hy- drochemical st…  相似文献   

7.
Rapid changes in spring water quality in karst areas due to rapid recharge of bacterially contaminated water are a major concern for drinking water suppliers and users. The main objective of this study was to use field experiments with fecal indicators to verify the vulnerability of a karst spring to pathogens, as determined by using a numerical modeling approach. The groundwater modeling was based on linear storage models that can be used to simulate karst water flow. The vulnerability of the karst groundwater is estimated using such models to calculate criteria that influence the likelihood of spring water being affected by microbial contamination. Specifically, the temporal variation in the vulnerability, depending on rainfall events and overall recharge conditions, can be assessed and quantified using the dynamic vulnerability index (DVI). DVI corresponds to the ratio of conduit to diffuse flow contributions to spring discharge. To evaluate model performance with respect to predicted vulnerability, samples from a spring were analyzed for Escherichia coli, enterococci, Clostridium perfringens, and heterotrophic plate count bacteria during and after several rainfall events. DVI was shown to be an indication of the risk of fecal contamination of spring water with sufficient accuracy to be used in drinking water management. We conclude that numerical models are a useful tool for evaluating the vulnerability of karst systems to pathogens under varying recharge conditions  相似文献   

8.
ABSTRACT

Any human intervention or action in karst terrains can unexpectedly, suddenly, strongly and, generally, dangerously change a local and/or a regional hydrological regime. A characteristic example of the Dinaric karst is given in this paper. The operation of two reservoirs in Livanjsko Polje at an altitude of about 702 m above sea level (m a.s.l.) and hydro-electric development of the Cetina River system started in 1973. This year marked a drastic and instantaneous change in the regional hydrological regime. A significant drop in the minimum, mean and maximum annual discharges of two neighbouring karst springs, Rumin Mali and Rumin Veliki, was caused by this anthropogenic construction. The exits of the two analysed karst springs, Rumin Mali and Veliki, are located at altitudes of about 326.8 m a.s.l. and 307.6 m a.s.l. respectively. The areal distance between them is 640 m. Their hydrological regimes have been altered in different ways. The drop in discharges is stronger for the Rumin Veliki than for the Rumin Mali. The analysis shows that the system development influenced the redistribution of the regional karst aquifer and, in this manner, contributed to the reduction of both karst springs’ recharge areas.
Editor D. Koutsoyiannis Associate editor E. Rozos  相似文献   

9.
Classification of Thermal Patterns at Karst Springs and Cave Streams   总被引:1,自引:0,他引:1  
Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event‐scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase‐shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode.  相似文献   

10.
The spectral method is based on the assumption of exponential forms of autocorrelation functions of the input and output time series. The results of practical applications of the spectral method on several karst springs in Croatia show that this assumption cannot always be reliably applied to the time series of rainfall and spring discharge, especially if short time periods are analysed. For this reason, the method is modified. The scale factor between the transfer function of total rainfall and the transfer function of groundwater recharge is considered as an additional model parameter which is determined in the optimization procedure. In addition to the theoretical background, this paper also presents the results of application of the modified spectral method on the springs Jadro and ?rnovnica located in the Dinaric karst area in Croatia. The parameters of groundwater recharge model are determined separately for both the springs and the obtained values are discussed and compared with the results of previous investigations. The values of the scale factors determined in the optimization procedure are compared to the values calculated using the theoretical equation. The comparison shows that the theoretical equation underestimates the optimal values of the scale factor. The underestimations are especially evident for periods of one year. Finally, the characteristics of rainfall–runoff relations of two springs are compared using the identified transfer functions and the results of simulations of the periodogram of observed discharge by the parametric periodogram. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A.L. Jones  P.L. Smart   《Journal of Hydrology》2005,310(1-4):201-215
Autoregressive modelling is used to investigate the internal structure of long-term (1935–1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1–2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1–2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14–22 months for individual springs, with positive autocorrelation at 19–20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.  相似文献   

12.
A model to simulate recharge processes of karst massifs   总被引:1,自引:0,他引:1       下载免费PDF全文
The recharge processes have been evaluated for two karst massifs of southern Italy, the Mt Terminio and Mt Cervialto, characterized by wide endorheic areas. The annual mean recharge has been estimated by Geographic Information System (GIS) tools, from regression of annual mean values of different ground‐elevated rain gauges and thermometers. The recharge has been distinguished for endorheic areas and the other areas of spring catchment, and the ratio between the output spring and input rainfall has been also estimated (recharge coefficient). The annual recharge has been used to calibrate a daily scale model, which allows to estimate the amount of effective rainfall, which is retained as soil moisture; the amount reaching the water table (recharge s.s.); and the amount of rainfall, which develops the runoff and leaves the catchment. All these amounts vary through the hydrological year, in function of soil moisture deficit and daily rainfall intensity. The model allows estimating the recharge conditions through the hydrological year, and it is a useful tool for water management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Springflow hydrographs: eogenetic vs. telogenetic karst   总被引:3,自引:0,他引:3  
Florea LJ  Vacher HL 《Ground water》2006,44(3):352-361
Matrix permeability in the range of 10(-11) to 10(-14) m(2) characterizes eogenetic karst, where limestones have not been deeply buried. In contrast, limestones of postburial, telogenetic karst have matrix permeabilities on the order of 10(-15) to 10(-20) m(2). Is this difference in matrix permeability paralleled by a difference in the behavior of springs draining eogenetic and telogenetic karst? Log Q/Q(min) flow duration curves from 11 eogenetic-karst springs in Florida and 12 telogenetic-karst springs in Missouri, Kentucky, and Switzerland, plot in different fields because of the disparate slopes of the curves. The substantially lower flow variability in eogenetic-karst springs, which results in the steeper slopes of their flow duration curves, also makes for a strong contrast in patterns (e.g., "flashiness") between the eogenetic-karst and telogenetic-karst spring hydrographs. With respect to both spring hydrographs and the flow duration curves derived from them, the eogenetic-karst springs of Florida are more like basalt springs of Idaho than the telogenetic-karst springs of the study. From time-series analyses on discharge records for 31 springs and published time-series results for 28 additional sites spanning 11 countries, we conclude that (1) the ratio of maximum to mean (Q(max)/Q(mean)) discharge is less in springs of eogenetic karst than springs of telogenetic karst; (2) aquifer inertia (system memory) is larger in eogenetic karst; (3) eogenetic-karst aquifers take longer to respond to input signals; and (4) high-frequency events affect discharge less in eogenetic karst. All four of these results are consistent with the hypothesis that accessible storage is larger in eogenetic-karst aquifers than in telogenetic-karst aquifers.  相似文献   

15.
A specific characteristic of karst systems is the occurrence of time variant recharge areas. In our study we present a new type of hydrological karst model and a new calibration approach both considering this specific characteristic. The new model type considers the spatial variability of karst system properties by distribution functions, and is compared to a simple reservoir model. Both models are applied to a karst system in Southern Spain where objective functions applied on hydrodynamic and hydrochemical information helped to determine model parameters playing a role for hydrodynamic response. Thereafter, the recharge area is determined separately for individual hydrological years and for the entire time series by calibrating the model to match the water balance. We show that hydrochemical information is crucial to find a reasonable set of parameters for both models. Considering different hydrological years, we find that the recharge area is changing significantly (from 28 to 53 km2). The newly developed model is able to reproduce this variation and provide acceptable simulation results for the entire time series of available data. The classic reservoir model shows inferior performance concerning hydrodynamics and fails to reproduce the water balance because it does not consider variations of recharge area. Our calibration approach allows identifying a variable recharge area and our new model is able to reproduce its variability. Hence we obtain a more realistic system representation, which can be of high significance when models are used for prediction, i.e. beyond the conditions they were calibrated, e.g. for land-use or climate change scenarios.  相似文献   

16.
Blasch KW  Bryson JR 《Ground water》2007,45(3):294-308
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.  相似文献   

17.
Karst aquifers consist of complex networks of conduits in which groundwater flows and recharge/discharge processes are generally more dynamic than in other types of aquifers. Due to their intrinsic heterogeneity and anisotropy, monitoring, quantifying, and analysing natural responses of karst springs is an efficient tool. Unlike Cenozoic and Mesozoic rocks, in Neoproterozoic karst systems, groundwater circulates and stores generally in dissolution features known as tertiary porosity, as the rock's primary porosity is recrystallized, considered negligible. This article studies the hydrodynamics of a karst portion of the São Miguel River basin, southwest of the state of Minas Gerais, Brazil. The region is predominantly composed of Neoproterozoic carbonate rocks, dating from about 570 to 540 million years ago. During a hydrological year (2019–2020), three karst springs (S1, S2, and S3) were daily monitored through their natural responses (variations of electrical conductivity, EC, temperature, T, and discharge, Q) to rainfall episodes. The data were interpreted based on the analysis of spring hydrographs, time series, recession curves (seasonal and intra-annual), and statistics of EC, T, and Q variations. The results show the three springs generally exhibit quick flow, typically karstic, in the case of hydrosystems with a well-structured and functional underground drainage network. The time series indicate the hydrosystem drained by S1 presents slower circulation and a lower degree of linearity, resulting from the higher sinuosity of the system, while the hydrosystems of S2 and S3 have similar behaviours, of quick water circulations immediately after a rainy episode. The degrees of karstification classify S1 and S2 as complex and extensive karst systems consisting of several subsystems, and S3 as a system in which the conduit network is more developed at the upper epiphreatic zone than near the outlet.  相似文献   

18.
Management of water resources, implying their appropriate protection, calls for a sound evaluation of recharge. Such assessment is very complex in karst aquifers. Most methods are developed for application to detrital aquifers, without taking into account the extraordinary heterogeneity of porosity and permeability of karst systems. It is commonly recommended to estimate recharge using multiple methods; however, differences inherent to the diverse methods make it difficult to clarify the accuracy of each result. In this study, recharge was estimated in a karst aquifer working in a natural regime, in a Mediterranean‐type climate, in the western part of the Sierra de las Nieves (southern Spain). Mediterranean climate regions are characterized by high inter‐annual rainfall variability featuring long dry periods and short intense wet periods, the latter constituting the most important contribution to aquifer water input. This paper aims to identify the methods that provide the most plausible range of recharge rate during wet periods. Six methods were tested: the classical method of Thornthwaite‐Mather, the Visual Balan code, the chloride balance method, and spatially distributed methods such as APLIS, a novel spatiotemporal estimation of recharge, and ZOODRM. The results help determine valid methods for application in the rest of the unit of study and in similar karst aquifers.  相似文献   

19.
Spatial heterogeneity in the subsurface of karst environments is high, as evidenced by the multiphase porosity of carbonate rocks and complex landform features that result in marked variability of hydrological processes in space and time. This includes complex exchange of various flows (e.g., fast conduit flows and slow fracture flows) in different locations. Here, we integrate various “state‐of‐the‐art” methods to understand the structure and function of this poorly constrained critical zone environment. Geophysical, hydrometric, and tracer tools are used to characterize the hydrological functions of the cockpit karst critical zone in the small catchment of Chenqi, Guizhou Province, China. Geophysical surveys, using electrical resistivity tomography (ERT), inferred the spatial heterogeneity of permeability in the epikarst and underlying aquifer. Water tables in depression wells in valley bottom areas, as well as discharge from springs on steeper hillslopes and at the catchment outlet, showed different hydrodynamic responses to storm event rainwater recharge and hillslope flows. Tracer studies using water temperatures and stable water isotopes (δD and δ18O) could be used alongside insights into aquifer permeability from ERT surveys to explain site‐ and depth‐dependent variability in the groundwater response in terms of the degree to which “new” water from storm rainfall recharges and mixes with “old” pre‐event water in karst aquifers. This integrated approach reveals spatial structure in the karst critical zone and provides a conceptual framework of hydrological functions across spatial and temporal scales.  相似文献   

20.
Stable isotope data are presented for precipitation, spring and stream water in a headwater catchments in the Indian Lesser Himalaya. Isotopic contents of phreatic groundwater followed the local meteoric water line and showed minimal alteration by evaporation, suggesting fast recharge. Mean isotopic values for springs and the stream were close to the weighted annual mean for precipitation, indicating recharge was in synchrony with seasonal rainfall distribution. Precipitation exhibited isotopic declines of ?0.6‰ and ?0.2‰ δ18O per 100 m rise in elevation in July and August (monsoon), respectively. The time lag of one month between rainfall and spring discharge, combined with the isotopic lapse rate indicated a recharge elevation of 70–165 m above the spring outflow point, implying the water originated within the catchment. Time series of electrical conductivity and temperature of spring, seepage and stream waters confirmed the rapid recharge and limited storage capacity of the shallow aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号