首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the very-high-energy (VHE) gamma-ray observations of the blazar 1ES 2344+514 in 2003 in comparison with the data of its ASM/RXTE X-ray monitoring. A VHE gamma-ray flux was detected from the observed object at a confidence level of ≈ 5σ and it was estimated to be 1.85 ± 0.68 Crab (E ≥ 1 TeV). The observations revealed a VHE gamma-ray burst from the object that occurred in September 2003 and that lasted for no more than 4 days. The burst was also confirmed in the X-ray (2–12 keV) energy range. Analysis of the observational data showed evidence of a correlation between the fluxes in the two energy ranges and invoking the previous observations of 1ES 2344+514 in 2002 allowed this correlation to be refined in a wide range of fluxes.  相似文献   

2.
Spectral measurement of Mkn 421 were made in the hard X-ray energy band of 20–200 keV using a high sensitivity, large area scintillation counter telescope on November 21, 2000 and these coincided with the onset of an active X-ray phase as seen in the ASM counting rates on board RXTE. The observed spectrum can not be fitted to a single power law similar to the PDS data of BeppoSAX. The data can be fitted both by a two component power-law function or a combination of an exponential function with a power law component at the high energies above 80 keV. We identify these components with those arising from the synchrotron self compton and the high energy power-law tail arising from the upgrading of the thermal photons due to multiple Compton scattering a la Cyg X-1. A comparison with the earlier data clearly suggests a spectral variability in the hard X-ray spectrum of the source. We propose a continuously flaring geometry for the source as the underlying mechanism for energy release.  相似文献   

3.
We consider the very-high-energy (VHE) gamma-ray observations of the blazar 3C 66A with the GT-48 Cherenkov telescope in the period 2002–2004 in comparison with the quasi-simultaneous ASM/RXTE observations in the energy range 2–10 keV. We show that there are positive correlations between the VHE gamma-ray and X-ray fluxes from this object recorded in the observing periods of 2002–2004.  相似文献   

4.
We investigated the optical, X-ray, and gamma-ray variability of the pulsar SAX J2103.5+4545. Our timing and spectral analyses of the X-ray and gamma-ray emissions from the source using RXTE and INTEGRAL data show that the shape of its spectrum in the energy range 3–100 keV is virtually independent of its intensity and the orbital phase. Based on XMM-Newton data, we accurately (5″) localized the object and determined the optical counterpart in the binary. We placed upper limits on the variability of the latter in the Hα line on time scales of the orbital and pulse periods, respectively.  相似文献   

5.
In 1998–2011 the blazar (active galactic nucleus) BL Lacertae was observed at Crimean Astrophysical Observatory (CrAO) with the second-generation GT-48 Cherenkov telescope at energies >1 TeV with a total significance of 11.8σ. More than 20 flares and a fourfold change in yearly mean fluxes (>1 TeV) were recorded. The optical (B band) data obtained at CrAO and the TeV data are shown to correlate in some time intervals. The optical data are also compared with the X-ray RXTE/ASM (2–10 keV) data. In addition, the data from GT-48 are compared with the gamma-ray fluxes recorded by the Fermi LAT space telescope (0.1–300 GeV). The 2009 flare at TeV and Fermi energies has been studied. As a result, it has been found that as the activity rises the increase in flux at high energies exceeds its increase at low energies. This conclusion may be related to the conversion mechanism of particle acceleration. This is consistent with the results of studies for a similar object, 1ES 1426+428.  相似文献   

6.
Observations of the inner radian of the Galactic disk at very high energy (VHE) gamma-rays have revealed at least 16 new sources. Besides shell type super-nova remnants, pulsar wind nebulae (PWN) appear to be a dominant source population in the catalogue of VHE gamma-ray sources. Except for the Crab nebula, the newly discovered PWN are resolved at VHE gamma-rays to be spatially extended (5–20 pc). Currently, at least 3 middle aged (t>10 kyrs) PWN (Vela X, G18.0-0.7, and G313.3+0.6 in the “Kookaburra” region) and 1 young PWN MSH 15-52 (t=1.55 kyrs) have been identified to be VHE emitting PWN (sometimes called “TeV Plerions”). Two more candidate “TeV Plerions” have been identified and have been reported at this conference (Carrigan, These proceedings, in preparation). In this contribution, the gamma-ray emission from Vela X is explained by a nucleonic component in the pulsar wind. The measured broad band spectral energy distribution is compared with the expected X-ray emission from primary and secondary electrons. The observed X-ray emission and TeV emission from the three middle aged PWN are compared with each other.  相似文献   

7.
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3–20 keV energy range were fitted ∼6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at ∼6.4 keV in the restricted energy range of 0.3–10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.  相似文献   

8.
The outburst of X-ray transient source XTE J2012+381 was detected by the RXTE All-Sky Monitor on 1998 May 24th. Following the outburst, X-ray observations of the source were made in the 2–18 keV energy band with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment (IXAE) on-board the Indian satellite IRS-P3 during 1998 June 2nd–10th. The X-ray flux of the source in the main outburst decreased exponentially during the period of observation. No large amplitude short-term variability in the intensity is detected from the source. The power density spectrum obtained from the timing analysis of the data shows no indication of any quasi-periodic oscillations in 0.002–0.5 Hz band. The hardness ratio i.e. the ratio of counts in 6–18 keV to 2–6 keV band, indicates that the X-ray spectrum is soft with spectral index >2. From the similarities of the X-ray properties with those of other black hole transients, we conclude that the X-ray transient XTE J2012+381 is likely to be a black hole.  相似文献   

9.
We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out-of-eclipse data were used for this study. The 3–25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.  相似文献   

10.
We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy’s luminosity at energies 20–100 keV gives about 6% of its total luminosity in the 3–100 keV band. The emissivity of the stellar population in M31 is L 2–20 keV ~ 1.1 × 1029 erg s?1 M ?1 in the 2–20 keV band and L 20–100 keV ~ 8 × 1027 erg s?1 M ?1 in the 20–100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10?13 erg s?1 cm?2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy’s effective Compton temperature approximately by a factor of 2, from ~1.1 to ~2.1 keV.  相似文献   

11.
We present here some initial results from the ongoing XMM-Newton bright serendipitous survey. The survey is aimed at selecting and spectroscopically identifying a large and statistically representative sample of bright (f x ≳ 7× 10−14 c.g.s) serendipitous X-ray sources in the 0.5–4.5 keV energy band (BSS) and a complementary (smaller) sample in the 4.5–7.5 keV energy band (HBSS). The work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributors directly founded by ESA member states and the USA(NASA) and on observations collected at TNG. The TNG telescope is operated on the island of La Palma by the Centro Galileo Galilei of the INAF in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias. On behalf of the XMM-Newton Survey Science Center.  相似文献   

12.
We present the results of six BeppoSAX observations of 1ES 2344+514, five of which were taken within one week. 1ES 2344+514, one of the few known TeV BL Lac objects, was detected by the BeppoSAX Narrow Field Instruments (NFI) in the range 0.1 and ≈50 keV. During the first five closely spaced observations 1ES 2344+514 showed large-amplitude luminosity variability, associated with spectacular spectral changes: in particular, the last observation found the source to be several times fainter, with a much steeper X-ray spectrum . The energy-dependent shape of the light curve and the spectral changes both imply a large frequency shift (by a factor of 30 or more) of the peak of synchrotron emission. At maximum flux the peak was located at, or above, 10 keV, making 1ES 2344+514 the second blazar (after Mrk 501) to have a synchrotron peak in the hard X-ray band. The frequency shift, and the corresponding increase in luminosity, might be caused by the onset of a second synchrotron component extending from the soft to the hard X-ray band where most of the power is emitted. Rapid variability on a time-scale of approximately 5000 s has also been detected when the source was brightest.  相似文献   

13.
This paper presents the results of the optical R band and 1.5–12 keV band X-ray monitoring of the high-energy peaked BL Lacertae source 1ES 1959+650 performed during 2002–2007 with the 70 cm Meniscus Telescope of Abastumani Astrophysical Observatory (Georgia) and the All-Sky Monitor on board the Rossi X-ray Time Explorer, respectively. The observed long- and short-term outbursts are fitted with the lightcurves obtained by means of the modeling of synchrotron flares that are assumed to be the result of a propagation of the relativistic shock waves through the jet of 1ES 1959+650, pointed to the observer. Different values of the input parameters (shock velocity, particles’ spectral index, sizes of emission region, minimum and maximum Lorentz factors of the particles etc.) are used in order to fit the simulated lightcurves whose constructed by means of observational data. This investigation shows that both shock velocity and physical conditions in the jet of 1ES 1959+650 should be variable from flare to flare. The shocks are found to be mildly relativistic with the apparent speeds β=0.46–0.85, expressed in the units of c. Spectral index of the particle energy distribution varied from 2.10 to 2.17 for the long-term flares while it is higher in the case of short-term outbursts: s=2.32–2.45 that is suggested to be a result of the deceleration of shock front during its passage through the shell situated downstream the Mach disc. The average strength of a turbulent magnetic field ranged from 0.025 gauss to 0.04 gauss for different long-term flares while the values of 0.07–0.14 gauss were adopted for the different short-term outbursts. The lengths of variable jet area found to be of 0.13–0.47 pc with the transverse extents of (0.5–1.0)×1017 cm in the case of long-term flares. The same characteristics for short-term outbursts were (2.74–5.5)×1016 cm and (0.2–04)×1017 cm, respectively. We conclude that both shock velocity and properties of pre-shocked plasma were not the same in 1ES 1959+650 for the different flaring epochs.  相似文献   

14.
The new black hole candidate XTE J1817-330, discovered on 26 January 2006 with RXTE, was observed with XMM-Newton and INTEGRAL in February and March 2006, respectively. The X-ray spectrum is dominated by the thermal emission of the accretion disk in the soft band, with a low absorption column density (N H=1.77(±0.01)×1021 cm−2) and a maximum disk temperature kT max=0.68(±0.01) keV, plus a power law component, with the photon index decreasing from 2.66±0.02 to 1.98±0.07 between the two observations. Several interstellar absorption lines are detected in the X-ray spectrum, corresponding to O I, O II, O III, O VII and Fe XXIV. We constrain the distance to the system to be in the range 1–5 kpc.   相似文献   

15.
We have analysed the X-ray spectra of the highly variable X-ray source Cygnus X-3 over a wide energy range from 5 keV to 150 keV using data selected from the RXTE archives. Separate analysis of the low and hard states show the presence of a hard powerlaw tail in both the states. Here we present the result of the wide band spectral study of the source.  相似文献   

16.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

17.
The defining property of Soft Gamma Repeaters is the emission of short, bright bursts of X-rays and soft γ-rays. Here we present the continuum and line spectral properties of a large sample of bursts from SGR 1806-20, observed with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE). Using 10 trail spectral models (5 single and 5 two component models), we find that the burst continua are best fitted by the single component models: cutoff power-law, optically thin bremsstrahlung, and simple power-law. Time resolved spectroscopy show that there are two absorption lines at ∼5 keV and 20 keV in some bursts. The lines are relatively narrow with 90% upper limit on the line widths of 0.5–1.5 keV for the 5 keV feature and 1–3 keV for the 20 keV feature. Both lines have considerable equivalent width of 330–850 eV for the 5 keV feature and 780–2590 eV for the 20 keV feature. We examined whether theses spectral lines are dependent upon the choice of a particular continuum model and find no such dependence. Besides, we find that the 5 keV feature is pronounced with high confidence in the cumulative joint spectrum of the entire burst sample, both in the individual detectors of the PCA and in the co-added detectors spectrum. We confront the features against possible instrumental effects and find that none can account for the observed line properties. The two features do not seem to be connected to the same physical mechanism because (1) they do not always occur simultaneously, (2) while the 5 keV feature occurs at about the same energy, the 20 keV line centroid varies significantly from burst to burst over the range 18–22 keV, and (3) the centroid of the lines shows anti-correlated red/blue shifts. The transient appearance of the features in the individual bursts and in portions of the same burst, together with the spectral evolution seen in some bursts point to a complex emission mechanism that requires further investigation.   相似文献   

18.
In this work, we report on the intense flaring activity from Mkn-421 in X-ray and γ-ray regimes simultaneously observed by Swift-XRT/BAT and Fermi-LAT satellite telescopes in February 2010. With the aim of understanding the underlying physics of the flaring state in Mkn-421, we have performed a detailed spectral analysis of Swift/XRT and Fermi/LAT observations of Mkn-421 during February 12–25, 2010 (MJD 55239–55252). Over this period, we study the daily light curves and spectral variability of the source in 1–10 keV, 0.1–1 GeV and 1–100 GeV energy bands. We have performed the spectral analysis of Swift-XRT and Fermi/LAT observations to study the spectral evolution in the X-ray and gamma-ray energy domains respectively. We also compute the fractional variability amplitude in both the energy bands during the above period. We study trends between spectral parameters and physical insights provided by the parameter responsible for X-ray and γ-ray emission from the source. We search for energetic features phenomenologically linked to the single zone SSC model for blazar emission. We also produce the broad band SED with a leptonic single zone SSC model for the source.  相似文献   

19.
The next generation of instrumentation for nuclear astrophysics will have to achieve a factor of 10–100 improvement in sensitivity over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge: combining unprecedented sensitivity with high spectral and angular resolution, and the capability of measuring the polarization of the incident photons. The feasibility of such a crystal diffraction gamma-ray lens has recently been demonstrated with the prototype lens CLAIRE. MAX is a proposed mission which will make use of satellite formation flight to achieve 86 m focal length, with the Laue lens being carried by one satellite and the detector by the other. In the current design, the Laue diffraction lens of MAX will consist of 13740 copper and germanium (Ge1−x Si x , x ∼ 0.02) crystal tiles arranged on 36 concentric rings. It simultaneously focuses in two energy bands, each centred on one of the main scientific objectives of the mission: the 800–900 keV band is dedicated to the study of nuclear gamma-ray lines from type Ia supernovae (e.g. 56 Co decay line at 847 keV) while the 450–530 keV band focuses on electron-positron annihilation (511 keV emission) from the Galactic centre region with the aim of resolving potential point sources. MAX promises a breakthrough in the study of point sources at gamma-ray energies by combining high narrow-line sensitivity (better than 10−6 cm−2 s−1) and high energy resolution (E/dE ∼ 500). The mission has successfully undergone a pre-phase A study with the French Space Agency CNES, and continues to evolve: new diffracting materials such as bent or composite crystals seem very promising. PACS: 95.55.Ka, 29.30.Kv, 61.10.-i  相似文献   

20.
We discuss the prompt emission of gamma-ray bursts (GRBs), allowing for γγ pair production and synchrotron self-absorption. The observed hard spectra suggest heavy pair-loading in GRBs. The re-emission of the generated pairs results in the energy transmission from high-energy gamma-rays to long-wavelength radiation. Due to strong self-absorption, the synchrotron radiation by pairs is in optically thick regime. Thus, the re-emission would appear as a thermal-like spectral bump in the extreme-ultraviolet/soft X-ray band, other than the peak from the main burst. The confirmation of the thermal-like feature and the double-peak structure by future satellites, such as Swift, would indicate that the dominant radiation mechanism in GRBs is synchrotron rather than inverse-Compton radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号