首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous wavelet transform and cross‐wavelet transform have been used to investigate the phase periodicity and synchrony of the monthly mean Wolf (Rz) and group (Rg) sunspot numbers during the period of June 1795 to December 1995. The Schwabe cycle is the only one common period in Rg and Rz, but it is not well‐defined in case of cycles 5–7 of Rg and in case of cycles 5 and 6 of Rz. In fact, the Schwabe period is slightly different in Rg and Rz before cycle 12, but from cycle 12 onwards it is almost the same for the two time series. Asynchrony of the two time series is more obviously seen in cycles 5 and 6 than in the following cycles, and usually more obviously seen around the maximum time of a cycle than during the rest of the cycle. Rg is found to fit Rz better in both amplitudes and peak epoch during the minimum time time of a solar cycle than during the maximum time of the cycle, which should be caused by their different definition, and around the maximum time of a cycle, Rg is usually less than Rz. Asynchrony of Rg and Rz should somewhat agree with different sunspot cycle characteristics exhibited by themselves (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Faria  H. H.  Echer  E.  Rigozo  N. R.  Vieira  L. E. A.  Nordemann  D. J. R.  Prestes  A. 《Solar physics》2004,223(1-2):305-318
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

3.
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

4.
Rigozo  N.R.  Echer  E.  Vieira  L.E.A.  Nordemann  D.J.R. 《Solar physics》2001,203(1):179-191
A reconstruction of sunspot numbers for the last 1000 years was obtained using a sum of sine waves derived from spectral analysis of the time series of sunspot number R z for the period 1700–1999. The time series was decomposed in frequency levels using the wavelet transform, and an iterative regression model (ARIST) was used to identify the amplitude and phase of the main periodicities. The 1000-year reconstructed sunspot number reproduces well the great maximums and minimums in solar activity, identified in cosmonuclides variation records, and, specifically, the epochs of the Oort, Wolf, Spörer, Maunder, and Dalton Minimums as well the Medieval and Modern Maximums. The average sunspot number activity in each anomalous period was used in linear equations to obtain estimates of the solar radio flux F 10.7, solar wind velocity, and the southward component of the interplanetary magnetic field.  相似文献   

5.
We show in this short note that the method of singular spectrum analysis (SSA) is able to clearly extract a strong, clean, and clear component from the longest available sunspot (International Sunspot Number, ISN) time series (1700?–?2015) that cannot be an artifact of the method and that can be safely identified as the Gleissberg cycle. This is not a small component, as it accounts for 13% of the total variance of the total original signal. Almost three and a half clear Gleissberg cycles are identified in the sunspot number series. Four extended solar minima (XSM) are determined by SSA, the latest around 2000 (Cycle 23/24 minimum). Several authors have argued in favor of a double-peaked structure for the Gleissberg cycle, with one peak between 55 and 59 years and another between 88 and 97 years. We find no evidence of the former: solar activity contains an important component that has undergone clear oscillations of \(\approx90\) years over the past three centuries, with some small but systematic longer-term evolution of “instantaneous” period and amplitude. Half of the variance of solar activity on these time scales can be satisfactorily reproduced as the sum of a monotonous multi-secular increase, a \(\approx90\)-year Gleissberg cycle, and a double-peaked (\(\approx10.0\) and 11.0 years) Schwabe cycle (the sum amounts to 46% of the total variance of the signal). The Gleissberg-cycle component definitely needs to be addressed when attempting to build dynamo models of solar activity. The first SSA component offers evidence of an increasing long-term trend in sunspot numbers, which is compatible with the existence of the modern grand maximum.  相似文献   

6.
Wavelet Analysis of solar,solar wind and geomagnetic parameters   总被引:3,自引:0,他引:3  
Prabhakaran Nayar  S.R.  Radhika  V.N.  Revathy  K.  Ramadas  V. 《Solar physics》2002,208(2):359-373
The sunspot number, solar wind plasma, interplanetary magnetic field, and geomagnetic activity index A p have been analyzed using a wavelet technique to look for the presence of periods and the temporal evolution of these periods. The global wavelet spectra of these parameters, which provide information about the temporal average strength of quasi periods, exhibit the presence of a variety of prominent quasi periods around 16 years, 10.6 years, 9.6 years, 5.5 years, 1.3 years, 180 days, 154 days, 27 days, and 14 days. The wavelet spectra of sunspot number during 1873–2000, geomagnetic activity index A p during 1932–2000, and solar wind velocity and interplanetary magnetic field during 1964–2000 indicate that their spectral power evolves with time. In general, the power of the oscillations with a period of less than one year evolves rapidly with the phase of the solar cycle with their peak values changing from one cycle to the next. The temporal evolution of wavelet power in R z, v sw, n, B y, B z, |B|, and A p for each of the prominent quasi periods is studied in detail.  相似文献   

7.
R. P. Kane 《Solar physics》2011,269(2):451-454
Cosmic ray neutron monitors show intensity changes (counts) anti-correlated with sunspot number R z, but with a lag of a few months. The lag is ∼ 3 months for even cycles and ∼ 9 – 15 months for odd cycles. Thus, for the recently started even Cycle 24, a lag of ∼ 3 months was expected. However, for Cycle 24, whereas R z had a minimum value (zero) in August 2009, cosmic ray intensity decreased only after March 2010, with a lag of seven months with respect to R z. Thus, Cycle 24 did not conform to the known pattern of even cycles (lag of ∼ 3 months). It may be noted that the minimum at the juncture of Cycle 23-24 was abnormally long, tens of months instead of few months as in earlier cycles. Also, in this solar minimum, the cosmic ray intensity was much higher than in previous cycles.  相似文献   

8.
We examine the `Group' sunspot numbers constructed by Hoyt and Schatten to determine their utility in characterizing the solar activity cycle. We compare smoothed monthly Group sunspot numbers to Zürich (International) sunspot numbers, 10.7-cm radio flux, and total sunspot area. We find that the Zürich numbers follow the 10.7-cm radio flux and total sunspot area measurements only slightly better than the Group numbers. We examine several significant characteristics of the sunspot cycle using both Group numbers and Zürich numbers. We find that the `Waldmeier Effect' – the anti-correlation between cycle amplitude and the elapsed time between minimum and maximum of a cycle – is much more apparent in the Zürich numbers. The `Amplitude–Period Effect' – the anti-correlation between cycle amplitude and the length of the previous cycle from minimum to minimum – is also much more apparent in the Zürich numbers. The `Amplitude–Minimum Effect' – the correlation between cycle amplitude and the activity level at the previous (onset) minimum is equally apparent in both the Zürich numbers and the Group numbers. The `Even–Odd Effect' – in which odd-numbered cycles are larger than their even-numbered precursors – is somewhat stronger in the Group numbers but with a tighter relationship in the Zürich numbers. The `Secular Trend' – the increase in cycle amplitudes since the Maunder Minimum – is much stronger in Group numbers. After removing this trend we find little evidence for multi-cycle periodicities like the 80-year Gleissberg cycle or the two- and three-cycle periodicities. We also find little evidence for a correlation between the amplitude of a cycle and its period or for a bimodal distribution of cycle periods. We conclude that the Group numbers are most useful for extending the sunspot cycle data further back in time and thereby adding more cycles and improving the statistics. However, the Zürich numbers are slightly more useful for characterizing the on-going levels of solar activity.  相似文献   

9.
本文讨论了子波变换用于信号突变检测的原理,用它分析了1700-1993年间的太阳黑子数的年均值.精确地检测到了太阳活动的突变点,用相邻两个突变点的时间长度求得了不同尺度下太阳黑子变化的周期.结果表明:利用子波变换检测太阳黑子周期与传统方法相比具有独到之处.  相似文献   

10.
We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.  相似文献   

11.
12.
The following sunspot formation indices are analyzed: the relative sunspot number R z, the normalized sunspot group number R g, and the total sunspot area A. Six empirical formulas are derived to describe the relations among these indices after 1908. The earlier data exhibit systematic deviations from these formulas, which can be attributed to systematic errors of the indices. The Greenwich data on the sunspot total area A and the sunspot group number in 1874–1880 are found to be doubtful. Erroneous data at the beginning of the Greenwich series must spoil the values of the index R g in the XVII–XIX centuries. The Hoyt-Schatten series of R g may be less reliable than the well-known Wolf number series R z.  相似文献   

13.
Sunspot activity is usually described by either sunspot numbers or sunspot areas. The smoothed monthly mean sunspot numbers (SNs) and the smoothed monthly mean areas (SAs) in the time interval from November 1874 to September 2007 are used to analyze their phase synchronization. Both the linear method (fast Fourier transform) and some nonlinear approaches (continuous wavelet transform, cross-wavelet transform, wavelet coherence, cross-recurrence plot, and line of synchronization) are utilized to show the phase relation between the two series. There is a high level of phase synchronization between SNs and SAs, but the phase synchronization is detected only in their low-frequency components, corresponding to time scales of about 7 to 12 years. Their high-frequency components show a noisy behavior with strong phase mixing. Coherent phase variables should exist only for a frequency band with periodicities around the dominating 11-year cycle for SNs and SAs. There are some small phase differences between them. SNs lag SAs during most of the considered time interval, and they are in general more asynchronous around the minimum and maximum times of a cycle than at the ascending and descending phases.  相似文献   

14.
The spectral analysis of sunspot minima date time series demonstrates that a high degree of determinism is peculiar to these data. A simple regression model involving a linear trend (11.083 yr cycle-1) and 3 harmonic functions (with periods corresponding to 18.6, 8.8, and 7.0 Schwabe cycles) allows development of an extra-long sunspot-cycle timing forecast.  相似文献   

15.
Zhanle Du 《Solar physics》2012,278(1):203-215
Smoothed monthly mean coronal mass ejection (CME) parameters (speed, acceleration, central position angle, angular width, mass, and kinetic energy) for Cycle 23 are cross-analyzed, showing that there is a high correlation between most of them. The CME acceleration (a) is highly correlated with the reciprocal of its mass (M), with a correlation coefficient r=0.899. The force (Ma) to drive a CME is found to be well anti-correlated with the sunspot number (R z), r=?0.750. The relationships between CME parameters and R z can be well described by an integral response model with a decay time scale of about 11 months. The correlation coefficients of CME parameters with the reconstructed series based on this model (\(\overline{r}_{\mathrm{f1}}=0.886\)) are higher than the linear correlation coefficients of the parameters with R z (\(\overline{r}_{\mathrm{0}}=0.830\)). If a double decay integral response model is used (with two decay time scales of about 6 and 60 months), the correlations between CME parameters and R z improve (\(\overline{r}_{\mathrm{f2}}=0.906\)). The time delays between CME parameters with respect to R z are also well predicted by this model (19/22=86%); the average time delays are 19 months for the reconstructed and 22 months for the original time series. The model implies that CMEs are related to the accumulation of solar magnetic energy. These relationships can help in understanding the mechanisms at work during the solar cycle.  相似文献   

16.
Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of α = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).  相似文献   

17.
R. P. Kane 《Solar physics》2007,246(2):471-485
Many methods of predictions of sunspot maximum number use data before or at the preceding sunspot minimum to correlate with the following sunspot maximum of the same cycle, which occurs a few years later. Kane and Trivedi (Solar Phys. 68, 135, 1980) found that correlations of R z(max) (the maximum in the 12-month running means of sunspot number R z) with R z(min) (the minimum in the 12-month running means of sunspot number R z) in the solar latitude belt 20° – 40°, particularly in the southern hemisphere, exceeded 0.6 and was still higher (0.86) for the narrower belt > 30° S. Recently, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007) studied the relationship of sunspot areas at different solar latitudes and reported correlations 0.95 – 0.97 between minima and maxima of sunspot areas at low latitudes and sunspot maxima of the next cycle, and predictions could be made with an antecedence of more than 11 years. For the present study, we selected another parameter, namely, SGN, the sunspot group number (irrespective of their areas) and found that SGN(min) during a sunspot minimum year at latitudes > 30° S had a correlation +0.78±0.11 with the sunspot number R z(max) of the same cycle. Also, the SGN during a sunspot minimum year in the latitude belt (10° – 30° N) had a correlation +0.87±0.07 with the sunspot number R z(max) of the next cycle. We obtain an appropriate regression equation, from which our prediction for the coming cycle 24 is R z(max )=129.7±16.3.  相似文献   

18.
An Estimate for the Size of Sunspot Cycle 24   总被引:1,自引:0,他引:1  
R. P. Kane 《Solar physics》2013,282(1):87-90
For the sunspot cycles in the modern era (cycle?10 to the present), the ratio of R Z(max)/R Z(36th month) equals 1.26±0.22, where R Z(max) is the maximum amplitude of the sunspot cycle?using smoothed monthly mean sunspot number and R Z(36th month) is the smoothed monthly mean sunspot number 36 months after cycle?minimum. For the current sunspot cycle?24, the 36th month following the cycle?minimum occurred in November 2011, measuring?61.1. Hence, cycle?24 likely will have a maximum amplitude of about 77.0±13.4 (the one-sigma prediction interval), a value well below the average R Z(max) for the modern era sunspot cycles (about 119.7±39.5).  相似文献   

19.
Long-Term Variations in Solar Differential Rotation and Sunspot Activity   总被引:2,自引:0,他引:2  
The solar equatorial rotation rate, determined from sunspot group data during the period 1879–2004, decreased over the last century, whereas the level of activity has increased considerably. The latitude gradient term of the solar rotation shows a significant modulation of about 79 year, which is consistent with what is expected for the existence of the Gleissberg cycle. Our analysis indicates that the level of activity will remain almost the same as the present cycle during the next few solar cycles (i.e., during the current double Hale cycle), while the length of the next double Hale cycle in sunspot activity is predicted to be longer than the current one. We find evidence for the existence of a weak linear relationship between the equatorial rotation rate and the length of sunspot cycle. Finally, we find that the length of the current cycle will be as short as that of cycle 22, indicating that the present Hale cycle may be a combination of two shorter cycles. Presently working for the Mt. Wilson Solar Archive Digitization Project at UCLA.  相似文献   

20.
Vaquero  J.M.  Gallego  M.C.  Sánchez-Bajo  F. 《Solar physics》2004,221(1):179-189
In this work, a procedure to elaborate a homogeneous sunspot area series using the Royal Greenwich Observatory/USAF/NOAA data (from 1874 to the present) and the De la Rue and co-workers data (from 1832 to 1868) is presented. These two data series correspond to time intervals that do not overlap and a direct comparison between them could not be carried out. We used the International Sunspot Number (Ri) and the Group Sunspot Number (RG) as a link between the two original series. Thus, two homogeneous sunspot area series have been built using a simple mathematic procedure based on linear relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号