首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quiescent prominences It is found that Heii 4686 is emitted in the same cold region of 10000 K as hydrogen, metal and neutral helium emission lines. This conclusion is based on the finding that the observed width of 4686 is the same as the calculated width of 4686. The calculated width is derived from the observed widths of hydrogen and metallic lines. The large intensity of Heii 4686 in 10000 K can be explained by the ionization of Heii due to the UV radiation below 228 Å that comes from the corona and the transition region.Loop prominences The very broad width (30 to 50 km s–1) of 4686 for two post-flare loop prominences shows that the Heii line is emitted in hot regions different from regions of hydrogen and metal emission. From the widths of the Balmer lines and many metallic lines the kinetic temperature for one loop is found to be 16000 K in one part and 7600 K in another part. The electron densities are 1012.0 cm–3 and less than 1011.0 cm–3 respectively.Chromosphere The intensity of 4686 in the chromosphere can be interpreted in terms of a temperature of 10000 K with the ionization due to UV radiation. But, since observations of the width of 4686 are not available, a definitive conclusion for the chromosphere cannot be reached.  相似文献   

2.
The abundance of helium relative to hydrogen is spectroscopically determined in prominences and in the chromosphere by using 1952, 1958, 1962 and 1966 eclipse data. Care is taken in the intensity calibration of emission lines, the self-absorption, and the departure from local thermodynamic equilibrium. We find from the line profiles and intensities of prominences and the chromosphere that the neutral helium lines are emitted in the metal-hydrogen emitting region where the kinetic temperature is low enough, 6000 8000 K, so that only the ionization due to UV radiation from the corona can explain the intensity of neutral helium emission. Also we find that the intensity ratio of Hei 3888.65 to H8 3889.05 increases towards the upper boundaries of prominences and of the chromosphere and that it approaches to a universal limiting value, both in various prominences or in the chromosphere, where it is considered that the ionization of neutral helium and hydrogen is nearly complete. From these facts the helium to hydrogen number ratio is found to be 6.5 ± 1.5%.A new schematic model of the chromosphere is presented where spicules have no hot region of emitting neutral helium lines. Here it is suggested that the kinetic temperature of spicules, 6000 8000 K, would be primarily determined by the radiation temperature of the corona and the transition region beyond the Lyman continuum of hydrogen which happens to be around those temperatures.  相似文献   

3.
An empirical relationship between the ratio of the intensities of emission lines in spectra of planetary nebulae, 4686 Heii/H andN 1+N 2[Oiii]/4868 Heii, is established (see Equation (1), curve in Figure 1). A new statistical temperature scale based on this empirical relationship is proposed for the determination of lower limits of the temperatures of the nuclei of planetary nebulae. The well-known method 4686 Heii/H gives the upper level of the temperature of the nucleus. A simultaneous application of both methods has been carried out for 97 planetary nebulae, in order to determine both the upper and lower limits of the temperature of their nuclei (last two columns in Table I). A new quantitative system for the determination of excitation classes of nebulae is proposed (Tables IV and V).  相似文献   

4.
We report an unsuccessful search for the He+ 4686 line in the low chromosphere. However, at the location of this line we detect a number of other chromospheric emission lines. This leads us to the conclusion that the He+ 4686 identification made in the past, as well as other identifications, are probably in error. Additionally the region of the neutral helium 4713 line is also studied.On leave from Tokyo Astronomical Observatory, Mitaka, Japan.  相似文献   

5.
The 270 chromospheric emission lines of Feii ranging between 2000 and 3200 Å observed by Skylab at a height of 4 (2900 km) above the limb of the quiet Sun are analyzed by the emission curve of growth method, using newly calculated gf-values. It is derived that the excitation temperature is 7.2 × 103 K and that the turbulent velocity is consistent with the previous results that the microturbulent velocity is lower than 10 km s–1 in the cool (<104 K) region of the chromosphere.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 270.  相似文献   

6.
A principally new, quantitative system of the classification of the spectra of planetary nebulae is proposed. Spectral class of excitation class of the nebulap is determined according to the relative intensities of emission lines (N 1+N 2) [OIII]/4686 HeII and (N 1+N 2) [OIII]/H (Table I, Figure 1). The excitation classes are obtained for 142 planetary nebulae of all classes—low (p=1–3), middle (p=4–8), and high (p=9–12+) (Tables II, III, and IV). An empirical relationship between excitation classp and mean radius of nebulae is discovered (Figure 2). This relationship as well as excitation classp, as an independend parameter, admit an evolutionary interpretation. It is shown that after reaching the highest class of excitationp=12+ the nebulae decrease their class of excitation with the further increases of sizes. The diagram of this relationship has two nearly-symmetric branches — rising and descending with the apogee onp=12+ (Figure 2).  相似文献   

7.
High resolution spectroheliograms in the ultraviolet emission lines He i, He ii, O iv, O v, and Ne vii have been photographed during a sounding rocket flight. Simultaneously, broad band filtergrams of the far ultraviolet solar corona were obtained from the same flight. This paper describes qualitatively the spatial distribution of the UV emission. A comparison with an H filtergram is made. The most significant results can be summarized as follows: We find most of the ultraviolet emission concentrated around spicules, with different degree of concentration, decreasing with higher temperatures. 4 different areas of ultraviolet emission can be distinguished. (1) The normal network, bright in all UV emission lines from the chromosphere into the corona. (2) The coronal holes, bright in all UV emission lines up to 600 000 K but depressed in coronal lines from 1 million degrees upward. (3) The coronal depressions near active centers, absence of all ultraviolet emissions and (4) Active regions, where ultraviolet emission comes from plages, sunspots and coronal loops. High non-thermal Doppler velocities can be found in certain plage kernels around 105 to 2 × 105 K. Sunspots are bright in the ultraviolet, but do not exhibit He i or He ii emission. The corona above sunspots is weak. Sunspots do not show high non-thermal Doppler velocities. The He i and He ii emission does not follow either chromospheric, transition zone or coronal pattern; one can recognize some typical behavior of each.  相似文献   

8.
An empirical model of atomic ion densities (H+, He+, N+, O+) is presented up to 4000 km altitude as a function of time (diurnal, annual), space (position, altitude) and solar flux (F10.7) — using observations of satellites (AE-B, AE-C, AE-D, AE-E, ISIS-2, OGO-6) and rockets during quiet geophysical conditions (K p 3). The numerical treatment is based upon harmonic functions for the horizontal pattern and cubic splines for the vertical structure.The ion densities increase with increasing height up to a maximum (depending roughly on the ion mass) and decrease beyond that with increasing altitude. Above 200 km, O+ is the main ionic constituent being replaced at approximately 800 km (depending on latitude, local time, etc.) by H+. Around polar regions the light ions, H+ and He+, are depleted (polar wind) and the heavier ones enhanced. During local summer conditions the ion densities increase around polar latitudes and correspondingly decrease during local winter, except He+ which reflects the opposite pattern. Diurnal variations are intrinsically coupled to the individual plasma layers: N+ and O+ peak, in general, during daytime, while the amplitudes and phases of H+ and He+ change strongly with altitude and latitude. Earth, Moon and Planets Review article.  相似文献   

9.
A survey of the infrared coronal spectrum between 1 and 3 was made from a high altitude aircraft during the 7 March, 1970, solar eclipse. The observations were made with a Fourier transform spectrometer and were confined to the outer chromosphere and inner corona. In addition to well known chromospheric lines of Hi and Hei, nine additional lines were seen. Evidence is presented for the tentative assignment of these lines to forbidden transitions in highly ionized atoms of magnesium, aluminum, silicon, sulphur, and chromium.  相似文献   

10.
Spectrographic observations of the flash spectrum were made by the Kwasan Observatory at the total solar eclipse on 7 March, 1970. The integrated intensities of Fexiv 5303, Fex 6374, and the continuum were measured on the spectrograms as a function of height above the Sun's limb. It was found that a large amount of emission in the coronal lines originates in the interspicular regions of the chromosphere. Analysis of the data yielded that the interspicular regions consist of coronal material of T e = 1.6 × 106–1.2 × 106 and log N e = 8.5–9.5, and that a decrease in T e and an increase in N e occur with decreasing height.  相似文献   

11.
Imaging spectroscopy of the Sun was carried out at the California State University Northridge San Fernando Observatory using an InGaAs near-IR video camera. Using the Sii 1082.71 nm and Hei 1083.03 nm lines the Evershed effect is measured simultaneously in the photosphere and the chromosphere for three sunspots; the speed of the Evershed flow is measured to be between 3 to 8 times greater in the Hei line than in the Sii line, and the direction is radially inward in the chromosphere and outward in the photosphere. Telluric absorption lines prevented a meaningful measurement of Oi 1128.7 nm limb emission, but an upper limit of 20×10–3 B is measured for chromospheric limb emission at Oi 1316.3 nm. Zeeman splitting in Fei 1564.9 nm was observed in six sunspot umbrae, and a linear relationship between magnetic field and umbral continuum intensity is confirmed.  相似文献   

12.
Slitless flash spectrograms in heights below 8000 km above the solar limb were obtained by the University of Kyoto Expedition at Atar, Mauritania. The integrated intensities of Fexiv 5303, Fex 6374, Fexi 7892, and the continuum are measured as a function of height above the solar limb at eleven points (P.A. = 284–300°) around the third contact point. It is found that a significant amount of the emission in Fex 6374 originates in chromospheric levels well below 8000 km. This implies that the interspicular region of the chromosphere is occupied by coronal material. The average values of the electron temperature and the electron density in the interspicular region are derived from the Fex 6374 and the Fexi 7892 intensities on the assumption of spherical symmetry: T e = 0.9–1.1 × 106 K and N e = 9–10 × 108 cm–3. The intensity variations of the coronal lines and the continuum with position angle are also studied. Strong correlations between Fexiv 5303 and the continuum and between Fex 6374 and Fexi 7892 are found. From the Fex 6374 intensities it is inferred that there is a density fluctuation in the innermost corona by at least a factor of two.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 271.  相似文献   

13.
Direct images of the Sun were photographed in continuum emission centered at 6900 Å by the jumping film method near the second contact of the Mexico eclipse on 7 March 1970. The band width was 150 Å defined by a combination of a sharp cut filter and KODAK IV F film. The intensity distribution of the solar outer layers obtained shows a steep decrease by a factor of 0.9 in logarithmic units around 2500 km. This is interpreted as the boundary of the chromosphere and corona. Spicules observed at 3500 km are explained by log n e = 11.25 and T e 6000 K. Discussions are made in relation to the other observations and some chromosphere models.  相似文献   

14.
Photographic and spectroscopic observations of the two galactic novae, V400 Per and V373 Sct, which appeared in 1974 and 1975, have been carried out at Asiago. The light curves of the two novae were characterized by the presence of brightness oscillations during the early decline. The spectral evolution was quite normal: the spectra showed at first, over a relatively strong continuum, wide emission bands of moderate excitation, accompanied by blueshifted absorptions, with radial velocities of –1760 km s–1 (Nova Per) and –1260 km s–1 (Nova Sct). Later, after the novae entered the nebular stage, the continuum weakened, the absorption disappeared and the novae displayed the usual emission spectrum, with permitted and forbidden lines of high excitation ([Oiii], Niii, Hei, Heii). Forbidden lines of Fevi and Fevii-and in Nova Sct, also Fex and Ax-were present for a time, but they soon disappeared, so that at the end the spectrum was dominated by the [Oiii] nebular lines, even stronger than H.  相似文献   

15.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

16.
The temperature structure of the transition region between the chromosphere and corona is discussed in the context of current ideas about magnetic fields in these layers. Magnetic channeling of the downward conductive heat flow from the corona into the regions of enhanced field at the supergranulation boundaries is proposed as a mechanism for explaining the measured intensities of solar ultraviolet emission lines which originate in layers with temperatures below 105 °K. It is shown that nearly all of the observed ultraviolet line emission originates in interspicule regions, and that this emission plays an important part in the energy balance of the cooler layers of the transition region. It is suggested that certain motions observed in the upper chromosphere may represent the earliest visual evidence for conversion of inflowing conduction energy into kinetic motions.On leave from the Observatory Sonnenborgh at Utrecht, The Netherlands.  相似文献   

17.
Fine dark H filaments fibrils form at the limb, apparently in most of the middle chromosphere corresponding to an altitude between 1500–2000 km and 4000 km. The space in between filaments is corona and the transition layer. The cool gas in fibrils is protected by the magnetic field against the conductive flux out of the hot corona. Therefore the fibrils stretch up to 4000 km where their temperature is about 18 000 K and the density about 5 × 109 cm–3. The gas in the fibrils is ionized by electronic collisions and by the external ultraviolet radiation. The second level of the hydrogen atoms in fibrils is populated by recombinations, electronic collisions and by Ly- quanta. The calculated optical thickness of the fibrils in H is about 1, it explains the absorption features on the spectroheliograms. The gas pressure in fibrils is lower than the coronal pressure, and the pressure equilibrium is achieved by a magnetic field of about 1.5–2 G. In the active regions the photospheric fields are stronger, therefore the fibrils in active regions are wider and show more contrast. The emission of the fibrils at the limb is explained by the scattering of the solar radiation. The temperature in arches reaching as high as 5000–6000 km, is stabilized near the top by the HeII emission. Thus the middle chromosphere is essentially a collection of magnetic arches.  相似文献   

18.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   

19.
The intensity of the He+ 304 coronal line relative to the H0 1216 line, including the dominant contribution due to resonance scattering, is presented. All physical processes important in the corona are included. It is found that He+ 304 is a major contributor to the XUV corona, and that the sensitivity of the He+ 304/H0 1216 intensity ratio to coronal temperature is very weak, supporting the belief that this ratio is a good indicator of the coronal helium abundance.  相似文献   

20.
Bewsher  D.  Parnell  C.E.  Pike  C.D.  Harrison  R.A. 《Solar physics》2003,215(2):217-237
The relative Doppler and non-thermal velocities of quiet-Sun and active-region blinkers identified in Ov with CDS are calculated. Relative velocities for the corresponding chromospheric plasma below are also determined using the Hei line. Ov blinkers and the chromosphere directly below, have a preference to be more red-shifted than the normal transition region and chromospheric plasma. The ranges of these enhanced velocities, however, are no larger than the typical spread of Doppler velocities in these regions. The anticipated ranges of Doppler velocities of blinkers are 10–15 km s–1 in the quiet Sun (10–20 km s–1 in active regions) for Hei and 25–30 km s–1 in the quiet Sun (20–40 km s–1 in active regions) for Ov. Blinkers and the chromosphere below also have preferentially larger non-thermal velocities than the typical background chromosphere and transition region. Again the increase in magnitude of these non-thermal velocities is no greater than the typical ranges of non-thermal velocities. The ranges of non-thermal velocities of blinkers in both the quiet Sun and active regions are estimated to be 15–25 km s–1 in Hei and 30–45 km s–1 in Ov. There are more blinkers with larger Doppler and non-thermal velocities than would be expected in the whole of the chromosphere and transition region. The recently suggested mechanisms for blinkers are revisited and discussed further in light of the new results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号