首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For about the last 30 years it has been recognized that the high frequency component of the tree rings 14C/12C record is dominated by the modulation of the cosmic ray flux by the solar wind. In particular, it has been demonstrated that the three most recent periods of low sunspot occurrence were characterized by high values of atmospheric 14C/12C. During the last millennium other periods of high 14C/12C values were observed but their solar origin is still debatable. In the present work we compare these fluctuations with an independent record of cosmogenic 10Be measured in ice from the South Pole to check the solar origin of the observed 14C/12C variations. In order to compare quantitatively the results obtained on 10Be and 14C, it is necessary to take into account the different behaviour of these two cosmogenic isotopes, and especially the damping effect of the carbon cycle in the case of 14C. As an input to a 12-box numerical model we used the relative fluctuations of the 10Be concentrations record measured in South Pole ice and converted it into a synthetic 14C record. We took into account the fact that 10Be modulation is enhanced in polar regions due to the orientation of the geomagnetic field. As expected, the fluctuations of the modelled 14C record are much smaller (a factor of 20) than those observed for the raw 10Be record. In addition, the variations are smoother and shifted in time by a few decades. The 10Be-based 14C variations closely resemble the 14C measurements obtained on tree rings (R = 0.81). In particular, it is easy to identify periods of maximal 14C/12C which correspond to solar activity minima centred at about 1060, 1320 (Wolf), 1500 (Spörer), 1690 (Maunder) and 1820 (Dalton) yr A.D. Cross-correlation calculations suggest that there is no significant lag between the 10Be-based 14C and the tree-ring 14C records. Our study strongly suggests the dominance of the solar modulation on the cosmonuclide production variations during the last millennium.  相似文献   

2.
Gas is extracted from large (6–31 kg) Antarctic ice samples to obtain sufficient CO2 for14C measurements with small low-level proportional counters. The14C ages of Byrd core ice are in accord with glaciological estimates ranging from (2.2−1.1+1.4)×103 yr at 271 m depth to more than 8 × 103 yr at 1071 m depth. The CO2 abundances in gas extracted from Byrd core ice range from 0.0216 to 0.051%, with below present-day atmosphere CO2 abundances for ice from 1068 and 1469 m depths. The CO2 abundance in gas from Allan Hills surface ice samples ranges between four and six times the atmospheric value and the CO2 had a specific activity three times that of contemporary carbon. A possible explanation for the anomalously high specific activity is surface melting with the incorporation into CO2 of14C produced by cosmic ray spallation of oxygen in ice. The CO2 abundance in gas extracted from subsurface Allan Hills ice ranged from 0.030 to 0.065%, and the specific activities are below contemporary carbon, indicating ages greater than 5×103 yr. The18O/16O ratio of oxygen in the trapped gas is the same as that of atmospheric oxygen and differs markedly from the18O/16O ratio in the ice. The O2, N2, and Ar abundances and isotopic compositions are similar to those in contemporary air, except for positive15N/14N ratios in a few samples.  相似文献   

3.
In this study, we explored the spatial and temporal relations between boulders and their original in-situ locations on sandstone bedrock cliffs. This was accomplished by combining field observations with dating methods using cosmogenic isotopes (10Be and 14C) and optically stimulated luminescence (OSL). Our conclusions bear both on the landscape evolution and cliff retreat process in the hyperarid region of Timna and on the methodology of estimating exposure ages using cosmogenic isotopes.

We recognize three discrete rock fall events, at 31 ka, 15 ka, and 4 ka. In this hyperarid region, the most plausible triggering mechanism for rock fall events is strong ground acceleration caused by earthquakes generated by the nearby Dead Sea fault (DSF). Our record, however, under represents the regional earthquake record implying that ongoing development of detachment cracks prior to the triggering event might be slower than the earthquake cycle.

Cliff retreat rates calculated using the timing of rock fall events and estimated thickness of rock removed in each event range between 0.14 m ky− 1 and 2 m ky− 1. When only full cycles are considered, we derive a more realistic range of 0.4 m ky− 1 to 0.7 m ky− 1. These rates are an order of magnitude faster than the calculated rate of surface lowering in the area. We conclude that sandstone cliffs at Timna retreat through episodic rock fall events that preserve the sharp, imposing, landscape characteristic to this region and that ongoing weathering of the cliff faces is minor.

A 10%–20% difference in the 10Be concentrations in samples from matching boulder and cliff faces that have identical exposure histories and are located only a few meters apart indicates that cosmogenic nuclide production rates are sensitive to shielding and vary spatially over short distances. However, uncertainties associated with age calculations yielded boulder and matching cliff face ages that are similar within 1 σ . The use of external constraints in the form of field relations and OSL dating helped to establish each pair's age. The agreement between calculated 14C and 10Be ages indicates that the accumulation of 10Be at depth by the capture of slow deep-penetrating muons was properly accounted for in the study.  相似文献   


4.
Over the last two decades, in-situ cosmogenic 14C dating has become an import tool in Quaternary geology and is recognized to geoscientists because of its potential to provide information on exposure age and process rate estimates for geomorphic studies. The in-situ cosmogenic radiocarbon has a relatively short half-life(5730 yr)and is substantially more sensitive than all the other cosmogenic nuclides used so far. It is therefore particularly useful to determine surface-exposure ages of Holocene landforms and quantify erosion rates in rapidly denuding landscapes during the past few tens of thousands of years. Moreover, in situ 14C is produced in quartz which is both highly resistant to weathering and common in nature, so it can be used in combination with other in-situ cosmogenic nuclides such as 3He, 10Be,21Ne,26Al, and 36Cl to constrain complex exposure histories involving burial and/or erosion occurring over the past 25ka. The age and slip rate of Holocene normal fault have been undoubtedly a challenge for seismologists to be faced with as result from lack of appropriate late Quaternary sediment. Recently, the cosmogenic nuclides such as 36Cl of preserved, seismically exhumed normal fault scarps were used to identify the last few major earthquakes and recover their ages and displacements through the modeling of the content of 36Cl in the scarp rocks. This paper mainly summarizes the development of in-situ 14C dating, including its research history, production rate estimate, production mechanism, chemical behavior and experimental method. The potential application of in-situ 14C dating to recovering past earthquakes, their timing, and the regularity of their recurrence for preserved, seismically exhumed normal fault scarps is also introduced.  相似文献   

5.
Cosmic-ray-produced10Be (t1/2 = 1.6 × 106 years) and36Cl (t1/2 = 3.0 × 105 years) have been measured in the Apollo 15 long core for study of galactic cosmic ray production profiles using tandem accelerator mass spectrometry. From these experiments, the half-attenuation length for10Be production and36Cl production were calculated to be 120 g/cm2 and 132 g/cm2 (150–400 g/cm2 region). The measured half-attenuation length for10Be is slightly longer than that predicted by the Reedy-Arnold theoretical model. The flatter and somewhat deeper maximum seen in the36Cl profile compared to the10Be,26Al and53Mn profiles can be explained by production from secondary thermal neutrons on35Cl.  相似文献   

6.
We have determined the production yields for radionuclides in Al2O3, SiO2, S, Ar, K2SO4, CaCO3, Fe, Ni and Cu targets, which were irradiated with slow negative muons at the Paul Scherrer Institute in Villigen (Switzerland). The fluences of the stopped negative muons were determined by measuring the muonic X-rays. The concentrations of the long-lived and short-lived radionuclides were measured with accelerator mass spectrometry (AMS) and γ-spectroscopy, respectively. Special emphasis was put on the radionuclides 10Be, 14C and 26Al produced in quartz targets, 26Al in Al2O3 and S targets, 36Cl in K2SO4 and CaCO3 targets, and 53Mn in Fe2O3 targets. These targets were selected because they are also the naturally occurring target minerals for cosmic ray interactions in typical rocks. We also present results of calculations for depth-dependent production rates of radionuclides produced after cosmic ray μ capture, as well as cosmic ray-induced production rates of geologically relevant radionuclides produced by the nucleonic component, by μ capture, by fast muons and by neutron capture.  相似文献   

7.
In order to establish a reliable chronology for lacustrine sediments of the Frickenhauser See (central Germany) different dating methods have been applied. A total of 17 AMS 14C dates, all within the last 2000 years, were supplemented with 137Cs/210Pb dating and varve counting of the uppermost sediments (131 years). The age–depth model for the Frickenhauser See has to cope with highly variable sedimentation rates and overlapping probability distributions of calibrated 14C dates. The uncertainty of calibrated 14C dates could be considerably reduced by including the stratigraphic relationship of the dated samples, the age information derived from short-lived isotopes and varve counting as well as an upper and lower limit of realistic sedimentation rates as ‘a priori’ information in the calibration procedure. Sets of possible age combinations obtained by repeated sampling from the modified probability distributions were used to calculate continuous age–depth relationships based on monotonic smoothing splines. The obtained age–depth model for the sediment record of the Frickenhauser See represents the average of over 16,000 such model runs and suggests a drastic increase in sedimentation rates from around 1–2 mm a−1 (200–1000 AD) to over 25 mm a−1 for the period between 1100 and 1300 AD. From then on, sedimentation rates exhibit relatively stable values around 3–9 mm a−1. ‘Conventional’ age–depth models such as general polynomial regression or cubic splines either do not include the obtained age-information in a satisfying manner (the model being too “stiff”) or exhibit “swings” causing age-reversals in the model. Although the age–depth relationships obtained for monotonic smoothing splines and mixed-effect regression are generally very similar, they differ in their respective sedimentation rates as well as in their uncertainties. Mixed-effect regression resulted in much higher sedimentation rates of more than 37 mm a−1. These results suggest that monotonic smoothing splines give better control of the age–depth model characteristics and are well suited in situations, where the integrity of 14C dates is high, i.e. the dated material represents the age of the respective layer.  相似文献   

8.
Carbon 14 activity measurements made by Accelerator Mass Spectrometry on two modern stalagmites from the Han-sur-Lesse cave (Belgium) and from the Postojna Cave (Slovenia) permit the construction of 14C activity (a14C) time series over the last 50 years. A high precision chronology is given by annual laminae in the first stalagmite and by a specific mark (explosion in the Postojna Cave in 1944) in the second one. In both stalagmites, 14C activity increase due to nuclear tests in the atmosphere is remarkable. However, instead of a sharp peak like the one observed in the atmosphere around 1963–1964, the 14C activities of the stalagmite CaCO3 show an abrupt increase, with an offset of 1–10 years, followed by a high activity plateau for the Han-sur-Lesse sample and a slight decrease for the Postojna sample. For both stalagmites, the variation of the a14C amplitude between pre- and post-bomb period is much lower than the atmospheric record, which demonstrates the damping effect of the soil carbon reservoir. We have modeled the CaCO3 activities using fractionation processes between atmosphere CO2, soil CO2 and organic matter (OM), dissolved inorganic carbon and stalagmite CaCO3. In both cases studied, the model and former soil studies suggest that CO2 from soil organic matter (SOM) decomposition, which has a slow turnover (i.e. >1 y), is of major importance in winter, when the development of speleothem is the most important. Combined with the fact that 80–90% of the stalagmite carbon comes from soil CO2, this produces a damping effect on the speleothem a14C. Consequently, the ‘geochemical time resolution', at least for speleothem carbon, is much lower than the structural resolution given by annual laminae alternations and is mainly controlled by soil carbon dynamics: a14C and δ13C are smoothed over several years. Differences between the 14C time series of the Han-sur-Lesse and Postojna stalagmites are likely to be due to the double amount of precipitation in Postojna, which produces a faster soil OM turnover and thus a ‘system' which is more sensitive to atmospheric changes.  相似文献   

9.
Changes in oceanic radiocarbon (14C) reservoir ages through the deglaciation and Holocene can provide important information on ocean circulation as Earth's climate warmed. Here, we present reservoir ages for the western tropical Pacific that span the mid-Holocene transition from less to more frequent El Niño events. Reservoir ages were calculated using paired U–Th and conventional 14C dating of eight individual fossil coral samples from Koil and Muschu Islands, northern coastal Papua New Guinea (PNG). AMS 14C and MC-ICPMS U–Th dating of additional samples from six of the fossil corals were used to confirm the TIMS U–Th and conventional 14C ages. The combined results show average reservoir ages of 185±30 14C yr (n=4) for 7220–5850 yr BP compared to 420 14C yr for a modern coral from Muschu Island. From 5850 to 5420 yr BP reservoir ages increase to modern values. The relatively young reservoir ages from 7220 to 5850 yr BP are best explained by greater influx of well-equilibrated sub-tropical water from the southern branch of the South Equatorial Current (SEC). This is consistent with strengthening trade winds (facilitating air–sea exchange) and a more northerly position of the Intertropical Convergence Zone thought to have occurred at this time. The transition to more modern-like reservoir ages from 5850 to 5420 yr BP suggests modern oceanic circulation patterns were established during this interval. The onset of modern El Niño activity around this time would have served to enhance the intrusion of 14C-depleted equatorial waters via the south equatorial branch of the SEC. Overall, the changes in reservoir age presented here for the western tropical Pacific suggest that Holocene changes in the El Niño–Southern Oscillation state of the tropical Pacific resulted in reorganisation of oceanic circulation in this region.  相似文献   

10.
This study proposes an efficient new cleaning procedure for measuring in situ cosmogenic 10Be in olivines and pyroxenes. This chemical routine is specially designed to decontaminate the abundant meteoric 10Be from these minerals. The method was tested on mafic minerals from basaltic flows of Mt. Etna volcano and from Hawaiian flows and moraines. A sequential dissolution test shows that 10Be concentrations decrease with the number of cleaning steps until reaching a constant value. This is a necessary condition to demonstrate the efficiency of the method in properly decontaminating samples of meteoric 10Be. Moreover, cross-calibration with cosmogenic 3He measured within the same samples yielded a sea level high-latitude production rate of 4.5±0.4 at g−1 a−1 for cosmogenic 10Be in mafic minerals. This rate is within 1σ uncertainty of empirically or model-derived rates for 10Be on the same targets. Such concordance supports the consistency of the new method.  相似文献   

11.
This study is devoted to the production of 14C by the secondary cosmic radiation in polar ice. The radiocarbon production in the reactions caused by the nuclear-active and muon components is considered. The data on 14C from the Vostok and Taylor Dome Antarctic boreholes are analyzed. The 14C concentration values at depths larger than the firn—ice boundary by a factor of 2—3 can be explained by a deep production of radiocarbon in the reactions caused by the cosmic radiation muon component.  相似文献   

12.
It is critical that a comprehensive terrestrial radiocarbon (14C) calibration curve is developed beyond 26 ka for high-precision calibration and correlation of climatic, environmental and archaeological records. Abundant sub-fossil New Zealand kauri (Agathis australis) wood, preserved in Oxygen Isotope Stage-2 and 3 peat swamps, provides an important resource for 14C calibration; nowhere else in the world does such an extensive collection of ancient wood exist. Although finite 14C ages beyond 50 ka are becoming routinely reported, few attempts have been made to demonstrate their accuracy or precision. Finite ages beyond 50 ka require optimization of all elements involved in sample preparation and 14C analysis. Here we discuss the methodology employed for optimizing the 14C dating of near-background wood samples by both benzene synthesis for liquid scintillation counting (LSC) or graphite synthesis for accelerator mass spectrometry (AMS). We report the mean background blank activities for both methods and present a statistical model for assigning blank standard errors when blank activity variation is over and above counting statistics. We also present duplicate analyses (using LSC and AMS) of nine successive samples of wood obtained from a sub-fossil kauri log near-background in age to investigate the significance of the measured blank levels and variability.  相似文献   

13.
Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya   总被引:1,自引:0,他引:1  
Stable and radio-isotope results (C, H, O) for groundwaters from the Sirte and northern Kufra basins are used to determine the recharge history during the Holocene and late Pleistocene. Radiocarbon ages have been corrected on the basis of their stable carbon isotope ratios and on environmental samples from the areas, and two groups may be recognised: (1) low 14C activity groundwaters (13000–34000 yr. BP) with δ 13C-5.6 to −11.7‰; and (2) higher 14C activity groundwaters (5000–7800 yr. BP) enriched in 13C up to δ 13C = −3.2‰. There is a general correlation of age with depth.

A well defined freshwater (< 50 mg/l Cl) channel can be traced within the aquifer for some 130 km through the region, which is considered to represent recharge from a former wadi. This water with an age of ± 7800 yr. BP is chemically and isotopically distinct from the regional groundwaters and provides direct evidence of a significant recharge event during the Holocene.

The stable isotope (O and H) composition of groundwater from the Kufra and Sirte basins are all related by an evaporative line with slope δ D = 4.5δ 13O − 35 with an intercept on the meteoric line of -11‰. This suggests a recharge source continuing into the Holocene from air masses, analogous to current heavy monsoon rain derived from south of the Sahara. The spatial and temporal distribution of groundwaters in relation to the evaporative line suggests a progressive change in character of the recharge which is controlled by a shift towards strongly convective rainfall during the Holocene.

The direct hydrogeological and geochemical evidence supports climatic models proposed by several workers in which discrete humid episodes during the Holocene are inferred.  相似文献   


14.
We report new187Os/186Os data and Re and Os concentrations in metalliferous sediments from the Pacific to construct a composite Os isotope seawater evolution curve over the past 80 m.y. Analyses of four samples of upper Cretaceous age yield187Os/186Os values of between 3 and 6.5 and187Re/186Os values below 55. Mass balance calculations indicate that the pronounced minimum of about 2 in the Os isotope ratio of seawater at the K-T boundary probably reflects the enormous input of cosmogenic material into the oceans by the K-T impactor(s). Following a rapid recovery to187Os/186Os of 3.5 at 63 Ma, data for the early and middle part of the Cenozoic show an increase in187Os/186Os to about 6 at 15 Ma. Variations in the isotopic composition of leachable Os from slowly accumulating metalliferous sediments show large fluctuations over short time spans. In contrast, analyses of rapidly accumulating metalliferous carbonates do not exhibit the large oscillations observed in the pelagic clay leach data. These results together with sediment leaching experiments indicate that dissolution of non-hydrogenous Os can occur during the hydrogen peroxide leach and demonstrate that Os data from pelagic clay leachates do not always reflect the Os isotopic composition of seawater.

New data for the late Cenozoic further substantiate the rapid increase in the187Os/186Os of seawater during the past 15 Ma. We interpret the correlation between the marine Sr and Os isotope records during this time period as evidence that weathering within the drainage basin of the Ganges-Brahmaputra river system is responsible for driving seawater Sr and Os toward more radiogenic isotopic compositions. The positive correlation between87Sr/86Sr and U concentration, the covariation of U and Re concentrations, and the high dissolved Re, U and Sr concentrations found in the Ganges-Brahmaputra river waters supports this interpretation. Accelerating uplift of many orogens worldwide over the past 15 Ma, especially during the last 5 Ma, could have contributed to the rapid increase in187Os/186Os from 6 to 8.5 over the past 15 Ma. Prior to 15 Ma the marine Sr and Os record are not tightly coupled. The heterogeneous distribution of different lithologies within eroding terrains may play an important role in decoupling the supplies of radiogenic Os and Sr to the oceans and account for the periods of decoupling of the marine Sr and Os isotope records.  相似文献   


15.
Isotope and hydrochemical data of the thermal water system in Cieplice laskie Zdrój (Spa) indicate the existence of two subsystems that greatly differ in volume and which meet at the fault zones of a granitic horst, where they discharge at an altitude of about 340m. One of the subsystems is very small (about 4 × 103 m3) as indicated by the tritium age of the order of 10 years and a low outflow rate. Its recharge area found from the δ18O and δD values, is about 200m above the springs, most probably on the slopes of the foothills of the Karkonosze Mountains south-southwest of the spa. The large subsystem contains water which is free of tritium and whose 14C content is from 1 to 8 pmc with δ13C = −8.0 to −9.2‰. The isotopic composition of this water reflects either the climatic effect (low-altitude recharge during a cooler pre-Holocene climate) or the altitude effect (recharge in the early Holocene period at about 1000m at the heights of the Karkonosze assuming that the 14C concentration is strongly reduced by exchange with calcite in veins). For the former hypothesis, the recharge area of this water is probably either at the foot of the southeastern slopes of the Kaczawa Mountains or/and at the foot of the Rudawy Janowickie Mountains, to the east of Cieplice. The noble gas temperatures are more consistent with the pre-Holocene recharge. Similarly, the 4He excess and 40Ar/36Ar ratio support the hypothesis of a pre-Holecene age. The constant 3He/4He ratio of 26 × 10−8 for highly different helium contents indicates crustal origin of helium. For the pre-Holocene age of water its volume is calculated at >- 109m3 (stagnant water in micropores and mobile water in fractures) and the hydraulic conductivity of the host granite massif is estimated at about 7 × 10−8 ms−1. Two outflows from this subsystem have different and variable fractions of a modern water component (bomb age), most probably originating from the bank infiltration of a nearby stream.  相似文献   

16.
The propagation of cosmic rays in the Earth??s atmosphere is simulated. Calculations of the omnidirectional differential flux of neutrons for different solar activity levels are illustrated. The solar activity effect on the production rate of cosmogenic radiocarbon by the nuclear-interacting and muon components of secondary cosmic radiation in polar ice is studied. It has been obtained that the 14C production rates in ice by the cosmic ray nuclear-interacting component are lower or higher than the average value by 30% during periods of solar activity maxima or minima, respectively. Calculations of the altitudinal dependence of the radiocarbon production rate in ice by the cosmic radiation components are illustrated.  相似文献   

17.
Over the past decade, in situ-produced cosmogenic nuclides have revolutionised the study of landscape evolution. In particular, numerous studies have demonstrated that, in active tectonic settings, cosmic ray exposure dating of deformed or displaced geomorphic features makes it possible to quantify long-term deformation rates. In western European countries, erosion due to climatically driven processes and human activities is probably the factor that most limits the accuracy of exposure ages and landscape modification rates. In this study, we present the results of a depth-profiling technique applied to alluvial terraces located along the Rhône and the Moyenne Durance rivers. The expected decrease with depth of the measured 10Be concentrations has been modelled using a χ2 inversion method in order to constrain the exposure history of the alluvial sediments. The results suggest that: (1) over the Quaternary, the local surface erosion rates including both regional uplift and climatically driven processes acting on landforms are on the order of 30 m/Myr in southeastern France, and (2) providing a fairly good bracketing of the exposure age, the modelled abandonment age of alluvial terraces affected by the Moyenne Durance Fault allows estimating incision rates, comparing the alluvial terrace elevations with topographic river profiles, and a minimum vertical slip rate value of roughly 0.02 mm/yr for the southern segment of the Moyenne Durance Fault.  相似文献   

18.
A chronology based on optically stimulated luminescence (OSL) dating is presented for the late- and post-glacial evolution of the southern Baltic Sea (15 ka to present). During this period, large water level and salinity changes occurred in the Baltic Basin due to opening and closing of connections to the North Atlantic. Previous attempts to establish a chronology for these palaeoenvironmental changes have mainly been conducted in coastal settings where organic material for 14C dating is abundant. Many of these records are, however, discontinuous due to the large water level fluctuations. In contrast, in the relatively deep water of the Arkona Basin, the sediment record is expected to be more or less continuous. The single aliquot regenerative dose (SAR) procedure was used to date 32 samples of fine quartz sand from a 10.86 m long sediment core from the centre of this basin (45 m water depth). Tests of luminescence characteristics confirmed the suitability of the material for OSL dating and the ages agree well with the available AMS 14C ages on shells. The Baltic Ice Lake drainage to the North Atlantic appears to occur 11.6 ka, agreeing with other published evidence. However, we suggest that the main marine Littorina transgression appears in the Arkona Basin at about 6.5 ka, rather than at 8.5 ka, as previously thought.  相似文献   

19.
The results of a high-resolution mineral magnetic study combined with major element geochemistry analysis, oxygen isotopes and 14C AMS stratigraphy are reported for deep-sea gravity cores MD77-169 and MD77-180 located in the Andaman Sea and the Bay of Bengal, respectively. Core MD77-169 covers the last 280 kyr and core MD77-180 covers the last 160 kyr. In both cores, rock magnetic parameters indicate that the magnetic assemblage is dominated by pseudo-single domain titanomagnetite grains, with grain-size variations following a strong 23 kyr periodicity. Smaller magnetic grain sizes are observed during periods characterized by a strong summer monsoon. In addition, in core MD77-180, we observe a correlation between magnetic grain size and a chemical index of alteration. This suggests that these magnetic grain-size changes are related to chemical weathering driven by summer monsoon rainfall. A comparison of the GISP2 ice core isotopic record and the magnetic grain-size record of the Bay of Bengal shows that rapid temperature variations documented in the ice core (Dansgaard–Oeschger cycles and Heinrich events), during the last glacial period are also present in the magnetic grain-size record. Heinrich events and cold stadial events are characterized by relatively large magnetic grain sizes. Furthermore, Heinrich events are characterized by lower values of the chemical index of alteration implying a lower degree of chemical weathering related to significantly drier conditions on the continent. We suggest that rapid cold events of the North Atlantic (Heinrich events) during the last glacial stages are characterized by a weaker summer monsoon rainfall over the Himalaya via an atmospheric teleconnection.  相似文献   

20.
Two silicate-rich dust layers were found in the Dome Fuji ice core in East Antarctica, at Marine Isotope Stages 12 and 13. Morphologies, textures, and chemical compositions of constituent particles reveal that they are high-temperature melting products and are of extraterrestrial origin. Because similar layers were found ~ 2000 km east of Dome Fuji, at EPICA (European Project for Ice Coring in Antarctica)-Dome C, particles must have rained down over a wide area 434 and 481 ka. The strewn fields occurred over an area of at least 3 × 106 km2. Chemical compositions of constituent phases and oxygen isotopic composition of olivines suggest that the upper dust layer was produced by a high-temperature interaction between silicate-rich melt and water vapor due to an impact explosion or an aerial burst of a chondritic meteoroid on the inland East Antarctic ice sheet. An estimated total mass of the impactor, on the basis of particle flux and distribution area, is at least 3 × 109 kg. A possible parent material of the lower dust layer is a fragment of friable primitive asteroid or comet. A hypervelocity impact of asteroidal/cometary material on the upper atmosphere and an explosion might have produced aggregates of sub-μm to μm-sized spherules. Total mass of the parent material of the lower layer must exceed 1 × 109 kg. The two extraterrestrial horizons, each a few millimeters in thickness, represent regional or global meteoritic events not identified previously in the Southern Hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号