首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable isotopes analyses of oxygen and hydrogen of lake water were used to estimate the effect of evaporation (E) on the water quality of four shallow lakes in the Amapá State coast—Amazon/Brazil. These lakes, with different size and hydrologic conditions, were sampled during the course of the 2015/2016 El‐Niño (record‐breaking warming/drought in the Amazon rainforest). Hydrometeorological and water quality parameters were simultaneously performed to the isotopic sampling. The results showed that the evaporation process and the water quality can be explained by climate season and distances from the Atlantic Ocean. Lake evaporation losses ranged from ≈0–22% during the wet season in April/2016 and ≈35.7% during the dry season in November/2015. As expected, the evaporation of lake water was greater during the dry season, but it was higher for lakes farther away from the Atlantic Ocean compared with more coastal lakes due to tidal preponderance and the influence of major river channels. The more inland estuarine lakes showed a lower level of salinity (0.00–0.03 ppt) compared with those closer to the Atlantic Ocean (0.01–0.08 ppt). The El Niño phenomenon, with a lower precipitation in the Amazon basin, may initiate salinization of lakes closer to the Atlantic Ocean. Furthermore, strong mean seasonal variations of evaporation (0.06 ≤ E ≤ 0.22) and other hydrologic parameters were observed (precipitation, water temperature, and water depth), with significant effects on the water quality such as salinity, dissolved oxygen, chlorophyll (p < .05). We conclude that the occurrence of the extreme climatic events can disrupt the biogeochemical and hydrological balance of these aquatic ecosystems and salinization of lakes closer to the Atlantic Ocean.  相似文献   

2.
Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2° × 2°) global ocean model applying the state estimation technique. Temperature, salinity, and velocity data on two Weddell Sea sections from the regional model are used as constraints for the large-scale model in addition to satellite altimetry and sea-surface temperatures. The differences between the model with additional constraints and without document that the Weddell Sea circulation exerts significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. Furthermore, a warming trend in the period 1993–2001 was found in the Weddell Sea and adjacent basins in agreement with float measurements in the upper Southern Ocean. Teleconnections to the North Atlantic are suggested but need further studies to demonstrate their statistical significance.  相似文献   

3.
Benthic foraminiferal oxygen and carbon isotopic records from Southern Ocean sediment cores show that during the last glacial period, the South Atlantic sector of the deep Southern Ocean filled to roughly 2500 m with water uniformly low in δ13C, resulting in the appearance of a strong mid-depth nutricline similar to those observed in glacial northern oceans. Concomitantly, deep water isotopic gradients developed between the Pacific and Atlantic sectors of the Southern Ocean; the δ13C of benthic foraminifera in Pacific sediments remained significantly higher than those in the Atlantic during the glacial episode. These two observations help to define the extent of what has become known as the ‘Southern Ocean low δ13C problem’. One explanation for this glacial distribution of δ13C calls upon surface productivity overprints or changes in the microhabitat of benthic foraminifera to lower glacial age δ13C values. We show here, however, that glacial-interglacial δ13C shifts are similarly large everywhere in the deep South Atlantic, regardless of productivity regime or sedimentary environment. Furthermore, the degree of isotopic decoupling between the Atlantic and Pacific basins is proportional to the magnitude of δ13C change in the Atlantic on all time scales. Thus, we conclude that the profoundly altered distribution of δ13C in the glacial Southern Ocean is most likely the result of deep ocean circulation changes. While the characteristics of the Southern Ocean δ13C records clearly point to reduced North Atlantic Deep Water input during glacial periods, the basinal differences suggest that the mode of Southern Ocean deep water formation must have been altered as well.  相似文献   

4.
The water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 is described using CTD data from two cruises in the area. The West Spitsbergen Current was found to split, one part recirculated towards the west, while the other part, on entering the Arctic Ocean separated into two branches. The main inflow of Atlantic Water followed the Svalbard continental slope eastward, while a second, narrower, branch stayed west and north of the Yermak Plateau. The water column above the southeastern flank of the Yermak Plateau was distinctly colder and less saline than the two inflow branches. Immediately west of the outer inflow branch comparatively high temperatures in the Atlantic Layer suggested that a part of the extraordinarily warm Atlantic Water, observed in the boundary current in the Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin, toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep and comparably saline, similar to what has recently been observed in the interior Eurasian Basin. Closer to the Greenland continental slope the salinity of the upper layer became much lower, and the temperature maximum of the Atlantic Layer was occasionally below 0.5 °C, indicating water masses mainly derived from the Canadian Basin. This implies that the warm pulse of Atlantic Water had not yet made a complete circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen Current recirculating within the strait did not extend as far towards Greenland as in the 1980s, leaving a broader passage for waters from the Atlantic and intermediate layers, exiting the Arctic Ocean. A possible interpretation is that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean.  相似文献   

5.
Nutrient distributions observed at some depths along the continental shelf from 27°05′S (Brazil) to 39°31′S (Argentina) in winter, 2003 and summer, 2004 related to salinity and dissolved oxygen (mL L−1) and saturation (%) data showed remarkable influences of fresh water discharge over the coastal region and in front of the La Plata estuary. In the southern portion of the study area different processes were verified. Upwelling processes caused by ocean dynamics typical of shelf break areas, eddies related to surface dynamics and regeneration processes confirmed by the increase of nutrients and the decrease of dissolved and saturation oxygen data were verified. High silicate concentrations in the surface waters were identified related to low salinities (minimum of 21.22 in winter and 21.96 in summer), confirming the importance of freshwater inputs in this region, especially in winter. Silicate concentration range showed values between 0.00 and 83.52 μM during winter and from 0.00 to 41.16 μM during summer. Phosphate concentrations worked as a secondary trace of terrestrial input and their values varied from 0.00 to 3.30 μM in winter and from 0.03 to 2.26 μM in summer; however, in shallow waters, phosphate indicated more clearly the fresh water influence. The most important information given by nitrate concentrations was the presence of water from SACW upwelling that represents a new source of nutrients for marine primary production. Nitrate maximum values reached 41.96 μM in winter and 33.10 μM in summer. At a depth ∼800 m, high nitrate, phosphate and silicate concentrations were related to Malvinas Current Waters, Subantarctic Shallow Waters and Antarctic Atlantic Intermediate Waters (AAIW). Dissolved oxygen varied from 3.41 to 7.06 mL L−1 in winter and from 2.65 to 6.85 mL L−1 in summer. The percentage of dissolved oxygen saturation in the waters showed values between 48% and 113% in winter and from 46% to135% in summer. The most important primary production was verified in the summer, and situations of undersaturation were mainly observed below 50 m depth and at some points near the coast. The anti-correlation between nutrients and dissolved oxygen which showed evident undersaturation also revealed important potential sites of remineralization processes. The nutrient behaviours showed some aspects of the processes that occur over the Southwestern South Atlantic continental shelf and in their land–sea interfaces between Mar del Plata and Itajaí.  相似文献   

6.
A composite property, 9NO3 + O2, is proposed as a conservative water-mass tracer. The coefficient 9 is chosen so that the increase in “NO” resulting from nitrate introduction during respiration just balances the consumption of dissolved oxygen gas. Because of the pronounced difference in the preformed nitrate content of deep water produced at the northern and southern ends of the Atlantic Ocean “NO” provides an independent means of disentangling the degree of mixing of various water types in the deep sea. Evidence based on data obtained during the Atlantic Geosecs program is presented to demonstrate the sensitivity and reliability of this conservative tracer.  相似文献   

7.
While ocean circulation is driven by the formation of deep water in the North Atlantic and the Circum-Antarctic, the role of southern-sourced deep water formation in climate change is poorly understood. Here we address the balance of northern- and southern-sourced waters in the South Atlantic through the last glacial period using neodymium isotope ratios of authigenic ferromanganese oxides in thirteen deep sea cores from throughout the South Atlantic. The data indicate that northern-sourced water did not reach the Southern Ocean during the late glacial, and was replaced by southern-derived intermediate and deep waters. The high-resolution neodymium isotope record (~ 300 yr sample spacing) from two spliced deep Cape Basin sites indicates that over the last glacial period northern-sourced water mass export to the Southern Ocean was stronger during the major Greenland millennial warming intervals (and Southern Hemisphere cool periods), and particularly during the major interstadials 8, 12, and 14. Northern-sourced water mass export was weaker during Greenland stadials and reached minima during Heinrich Events. The benthic foraminiferal carbon isotopes in the same Cape Basin core reflect a partial control by Southern Hemisphere climate changes and indicate that deep water formation and ventilation occurred in the Southern Ocean during major Greenland cooling intervals (stadials). Together, neodymium isotopes and benthic carbon isotopes provide new information about water mass sourcing and circulation in deep Southern Ocean waters during rapid glacial climate changes. Combining carbon and neodymium isotopes can be used to monitor the relative proportion of northern- and southern-sourced waters in the Cape Basin to gain insight into the processes which control the carbon isotopic composition of deep waters. In this study we show that deep water formation and circulation was more important than biological productivity and nutrient regeneration changes for controlling the carbon isotope chemistry of Antarctic Bottom Water during millennial-scale glacial climate cycles. This observation also lends support to the hypothesis that ocean circulation is linked to interhemispheric climate changes on short timescales, and that ventilation in the glacial ocean rapidly switched between the northern and Southern Hemisphere on millennial timescales.  相似文献   

8.
Rock magnetic parameters measured along two giant piston cores MD95-2040 (40°34′N, 9°51′W) and MD95-2042 (37°47′N, 10°09′W) collected off the Portuguese Margin, related to other proxy-climatic data, have been used to reconstruct magnetic mineralogical changes of, in relation to environmental and climatic conditions over the North Atlantic, Western Europe and Northwest Africa during the last three climatic cycles (since isotope stage 10). Thin discrete layers containing coarse grains of titano-magnetite are associated with events of iceberg discharge during Heinrich events 1-6 [Heinrich, Quat. Res. 29 (1988) 142] that have equivalent events in isotope stages 5-8. Concentrations of fine-grained (Ti-) magnetite and hematite/goethite, varying in phase opposition, are directly linked with alternations of cold and warm climatic periods. Spectral analyses of the rock magnetic signals reveal Milankovitch periods at 100 and 41 ka, confirming the relationship with long-term climatic changes at high latitudes. The nature (Ti-magnetite) and size range of the finest ferrimagnetic fraction as well as its variation, suggest a control by deep currents carrying a colloidal/clayey fraction from remote sources (Iceland, Faeroes, mid-Atlantic Ridge). Variation of hematite/goethite contents is linked with transport by rivers and winds from the neighbouring continent. A tight correlation with the D-O cycles in Greenland ice records confirms that North Atlantic oceanic regimes and continental wind regimes were strongly influenced by millennial scale climatic changes throughout the last 350 ka.  相似文献   

9.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

10.
This study presents the distribution of dissolved inorganic carbon (DIC) along the Strait of Gibraltar, its tidal-induced variability, as well as the inorganic carbon exchange between the Atlantic Ocean and Mediterranean Sea. During November 2003, water column samples were collected at nine stations to measure total alkalinity (TA), pH, and dissolved oxygen (DO) for the spatial characterization of the carbonate system. At the same time, anchored samplings were carried out, above the Camarinal Sill and in the Eastern Section of the Strait, in order to assess the tidal mixing effects for oxygen and DIC distribution on the water column. Three distinct water masses can be discerned in this area: the Surface Atlantic Water (SAW), the Mediterranean Water (MW), and the less abundant North Atlantic Central Water (NACW). The observations show an increase in the DIC and a decrease in oxygen concentration with depth, related to the different physico-chemical features of each water mass. The results show the high time-dependence of the vertical distribution of DIC with the interface oscillation, affected by the intense mixing processes taking place in the Strait. Intense mixing episodes over the Camarinal Sill are responsible for an increase in the DIC concentrations in the upper layer of the Eastern Section of the Strait. Higher DIC concentrations in the Mediterranean than in the Atlantic waters are responsible for a net DIC transport of 1.47×1012 mol C yr−1 to the Atlantic Ocean. Nevertheless, the net exchange is highly sensitive to the interface definition, as well as to the estimate of water volume transport used.  相似文献   

11.
The salinization of rivers, as indicated by salinity increases in the downstream direction, is characteristic of arid and semiarid regions throughout the world. Historically, salinity increases have been attributed to various mechanisms, including (1) evaporation and concentration during reservoir storage, irrigation, and subsequent reuse; (2) displacement of shallow saline ground water during irrigation; (3) erosion and dissolution of natural deposits; and/or (4) inflow of deep saline and/or geothermal ground water (ground water with elevated water temperature). In this study, investigation of salinity issues focused on identification of relative salinity contributions from anthropogenic and natural sources in the Lower Rio Grande in the New Mexico-Texas border region. Based on the conceptual model of the system, the various sources of water and, therefore, salinity to the Lower Rio Grande were identified, and a sampling plan was designed to characterize these sources. Analysis results for boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta(2)H), and strontium ((87)Sr/(86)Sr) isotopes, as well as basic chemical data, confirmed the hypothesis that the dominant salinity contributions are from deep ground water inflow to the Rio Grande. The stable isotopic ratios identified the deep ground water inflow as distinctive, with characteristic isotopic signatures. These analyses indicate that it is not possible to reproduce the observed salinization by evapotranspiration and agricultural processes alone. This investigation further confirms that proper application of multiple isotopic and geochemical tracers can be used to identify and constrain multiple sources of solutes in complex river systems.  相似文献   

12.
The stability of the mean ocean level was investigated using the T/P altimeter data of 1993-1997 in 39 blocks of about 30° by 30°: 20 blocks forming the Pacific Ocean, 10 the Atlantic, and 9 blocks in the Indian Ocean. The 1993-1997 yearly means were found to be nearly constant, the computed linear terms came out as: (0.9±1.3) mm/year for the Pacific, (0.3±1.1) mm/year for the Atlantic, (–0.7 ± 1.4) mm/year for the Indian Ocean. No SST model was used in the solution.  相似文献   

13.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

14.
Atmospheric mercury concentrations were measured during a nautical expedition on the Atlantic Ocean between Hamburg (54°N, 10°E) and Santo Domingo (20°N, 67°W). In addition, samples were taken during flights on a commerical aircraft in the upper and middle troposphere between 60°N and 55°S, mostly over the Pacific Ocean. The data obtained in the lower troposphere over the Northern Atlantic show considerable variation in the Hg concentrations, with values ranging between 1 and 11 ng/m3; the average concentration was found to be 2.8 ng/m3. The upper tropospheric data show an interhemispheric difference with average values of 1.45 ng/m3 and 1.08 ng/m3 in the Northern and Southern Hemisphere, respectively. This suggests that mercury production occurs predominantly over the continents both by natural and anthropogenic processes. The mercury content in aerosols was found to be 0.3 ng/m3, or one-tenth of the atmospheric concentration. The data indicate a mean residence time of mercury in the atmosphere of a few months to one year.  相似文献   

15.
Summary Echo soundings of the U.S. Cruiser Milwaukee in the Puerto Rico Trough in 1939 are briefly discussed, and two depths of 30246 feet or 9219 m, found at 19° 36 N, 68° 20.5 W and at 19° 35N, 68° 8.75W, are stated to be the greatest depths which are known so far in the Atlantic Ocean.  相似文献   

16.
We provide two new determinations of the oxygen isotopic composition of seawater during the last glacial maximum (LGM). High-resolution oxygen isotopic measurements were made on interstitial waters from Ocean Drilling Program (ODP) Sites 1168 and 1170 in the southeast Indian Ocean sector of the Southern Ocean. We use a diffusion-advection numerical model to calculate the glacial-interglacial change in bottom-water δ18Osw from the pore water δ18O profiles; the first such determinations from this part of the oceans. Statistical analyses of the model runs indicate that Circumpolar Deep Water (CDW) δ18Osw changed by 1.0-1.1±0.15‰ since the last glacial maximum (LGM). Our results are consistent with a previous calculation from a South Atlantic Southern Ocean location (ODP Site 1093) also situated within CDW. The new values determined in this study, together with previous estimates, are converging on a global average Δδ18Osw of 1.0-1.1‰.Using the calculated bottom-water δ18Osw, we have extracted the temperature component from the benthic foraminiferal δ18O record at Sites 1168 and 1170. Since the LGM, bottom waters at these two sites warmed by 2.6 and 1.9°C, respectively. The absolute temperature estimates for the LGM (−0.5°C [Θ=−0.6°C] at Site 1168 and −0.2°C [Θ=−0.4°C] at Site 1170) are slightly warmer than those reported from previous studies using the same technique, but are consistent with more homogenous deep-ocean temperatures during the LGM relative to the modern.  相似文献   

17.
Some previous studies demonstrated that model bias has a strong impact on the quality of long-term prognostic model simulations of the sub-polar North Atlantic Ocean. Relatively strong bias of water mass characteristics is observed in both eddy-permitting and eddy-resolving simulations, suggesting that an increase of model resolution does not reduce significantly the model bias. This study is an attempt to quantify the impact of model bias on the simulated water mass and circulation characteristics in an eddy-permitting model of the sub-polar ocean. This is done through comparison of eddy-permitting prognostic model simulations with the results from two other runs in which the bias is constrained by using spectral nudging. In the first run, the temperature and salinity are nudged towards climatology in the whole column. In the second run, the spectral nudging is applied in the surface 30 m layer and at depths below 560 m only. The biases of the model characteristics of the unconstrained run are similar to those reported in previous eddy-permitting and eddy-resolving studies. The salinity in the surface and intermediate waters of the Labrador Sea waters increases with respect to the climatology, which reduces the stability of the water column. The deep convection in the unconstrained run is artificially intensified and the transport in the sub-polar gyre stronger than in the observations. In particular, the transport of relatively salty and warm Irminger waters into the Labrador Sea is unrealistically high. While the water mass temperature and salinity in the run with spectral nudging in the whole column are closest to the observations, the depth of the winter convection is underestimated in the model. The water mass characteristics and water transport in the run with spectral nudging in the surface and deep layers only are close to observations and at the same time represent well the deep convection in terms of its intensity and position. The source of the bias in the prognostic model run is discussed.  相似文献   

18.
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.  相似文献   

19.
本文介绍了国家气候中心发展的一个全球海洋碳循环环流模式,并分析评估了该模式的基本性能.该模式是在美国地球物理流体动力学实验室(GFDL,Geophysical Fluid Dynamics Laboratory)的全球海洋环流模式MOM4(Modular Ocean Model Version 4)基础上发展的一个垂直方向40层、包含生物地球化学过程的全球三维海洋碳循环环流模式,简称为MOM4_L40(Modular Ocean Model Version 4 With 40Levels).该模式在气候场强迫下长期积分1000年,结果分析表明,与观测相比,模式较好地模拟了海洋温度、盐度、总二氧化碳、总碱、总磷酸盐的表面和垂直分布特征.模拟的海洋总二氧化碳分布与观测基本相符,表层为低值区,其下为高值区,高值区域位于10°S—60°N之间,但2000m以上模拟值较观测偏小,2000m以下模拟值较观测偏大.总体来说,MOM4_L40模式是一个可信赖的海洋碳循环过程模拟研究工具.  相似文献   

20.
The physical and biological environment of the Barents Sea is characterised by large variability on a wide range of scales. Results from a numerical ocean model, SINMOD, are presented showing that the physical variability is partly forced by changes in annual net ice import. The mean contribution from ice import in the simulation period (1979–2007) is about 40% of the total amount of ice melted each year. The annual ice import into the Barents Sea varies between 143 and 1,236 km3, and this causes a substantial variability in the amount of annual ice melt in the Barents Sea. This in turn impacts the freshwater content. The simulated freshwater contribution from ice is 0.02 Sv on average and 0.04 Sv at maximum. When mixed into a mean net Atlantic Water (AW) inflow of 1.1 Sv with a salinity of 35.1, this freshwater addition decreases the salinity of the modified AW to 34.4 and 33.9 for the mean and maximum freshwater fluxes, respectively. Ice import may thus be important for the Barents Sea production of Arctic Ocean halocline water which has salinity of about 34.5. The changes in the ice melt the following summer due to ice import also affect the formation of dense water in the Barents Sea by changing stratification, altering the vertical mixing rates and affecting heat loss from the warm AW. The model results thus indicate that ice import from the Arctic has a great impact on water mass modification in the Barents Sea which in turn impacts the ventilation of the Arctic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号