首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RMAPS_Chem V1.0系统是基于WRF_Chem模式建立的服务于华北区域雾霾等污染预报业务的模式系统,该研究着重针对系统中污染排放清单不确定性带来的SO2浓度预报偏差较大问题,采用EnKF源反演和误差统计订正相结合的方法对排放清单进行了改进,形成了一套优化后的华北区域SO2排放清单。通过输入初始清单和优化清单对2017年10月进行模拟,并与华北地区616个地面环境监测站观测值进行对比,结果表明:EnKF源反演结合误差统计订正的排放清单优化方法适用于SO2排放清单的改进,有效降低了清单系统性偏差,针对主要区域及重点城市的检验显示模拟结果接近观测值;排放清单优化后模拟误差显著降低,如河北南部、山东西部至北京一带模式预报均方根误差与归一化平均绝对误差明显下降,区域内站点模拟误差呈正态分布特征,误差分布范围、最大概率出现范围均明显变窄,且最大误差概率明显上升。  相似文献   

2.
在对合肥地区污染源调查的基础上,利用CALPUFF模型模拟了合肥地区大气污染物SO2质量浓度场,通过与现场监测结果对比分析了模型的适用性,并根据模拟结果研究了不同排放源对合肥地区大气污染的贡献情况,建立了大气污染物传递矩阵;通过综合考虑城市区域的大气扩散能力、污染源贡献和大气环境质量目标等,采用线性规划模型测算了合肥市的大气环境容量.  相似文献   

3.
大气臭氧变化在全球气候和环境中具有重要作用,是当今大气科学领域的重要研究对象之一。对比分析了中国科学院大气物理研究所河北香河大气综合观测试验站2014~2016年Dobson和Brewer两种臭氧总量观测仪器探测结果的一致性,并使用1979~2016年Dobson观测数据分析了香河地区臭氧总量的长期变化趋势。结果表明:进行有效温度修正后,两种臭氧总量仪器观测结果一致性较好,平均偏差仅为-0.14DU(多布森单位),平均绝对偏差为8.00 DU,标准差为36.09 DU,相关系数达0.964。整体来说,两类仪器观测臭氧总量吻合较好。SO2浓度对Dobson仪器数据精度有一定影响,两组仪器数据在SO2浓度为0~0.2DU、0.2~0.4DU和0.4DU大气条件情况下的平均偏差分别为4.8 DU、7.0 DU和8.0 DU,平均偏差随SO2浓度升高而增大。过去38年香河地区的臭氧总量季节差异性强,春、冬两季臭氧总量高,夏、秋两季臭氧总量相对低,季节变化趋势差异明显。从长期变化上看,臭氧总量变化波动有不同的周期,在4个大的时间段变化趋势不同,2000~2010年臭氧层有显著恢复,但最近几年又有变薄的趋势。  相似文献   

4.
A multifunctional HTDMA system with a robust temperature control   总被引:3,自引:0,他引:3  
The hygroscopicity of atmospheric aerosols significantly influences their size distribution, cloud condensation nuclei ability, atmospheric residence time, and climate forcing. In order to investigate the hygroscopic behavior of aerosol particles and serious haze in China, a Hygroscopic Tandem Differential Mobility Analyzers (HTDMA) system was designed and constructed at Fudan University. It can function as a scanning mobility particle sizing system to measure particle size distribution in the range of 20--1000 nm in diameter, as well as a hygroscopicity analyzer for aerosol particles with diameters between 20--400 nm in the range of 20%--90% RH (relative humidity). It can also measure the effect of uptake of inorganic acids or semi-VOCs on the hygroscopic behavior of aerosols, such as typical inorganic salts in atmospheric dust or their mixtures. The performance tests show that the system measured particle size of the standard polystyrene latex spheres (PSLs) is 197 nm, which is in excellent agreement with the certified diameter D=199±6 nm, as well as a standard deviation of the repeated runs SD=8.9x10-4. In addition, the measured hygroscopic growth factors of the model compounds, (NH4)2SO4 and NaNO3, agree with the Kohler theoretical curves. The results indicate that the HTDMA system is an excellent and powerful tool for studying the hygroscopic behavior of submicron aerosols and meets the demand required for laboratory research and fieldwork on atmospheric aerosols in China.  相似文献   

5.
Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan, China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those reductions and the implications of doing so for CO2 emissions. We extend the analysis through 2050, and either hold emissions policy targets at the level specified in the Plan, or continue to reduce them gradually. We apply a computable general equilibrium model of the Chinese economy that includes a representation of pollution abatement derived from detailed assessment of abatement technology and costs. We find that China's SO2 and NOx emissions control targets would have substantial effects on CO2 emissions leading to emissions savings far beyond those we estimate would be needed to meet its CO2 intensity targets. However, the cost of achieving and maintaining the pollution targets can be quite high given the growing economy. In fact, we find that the near term pollution targets can be met while still expanding the use of coal, but if they are, then there is a lock-in effect that makes it more costly to maintain or further reduce emissions. That is, if firms were to look ahead to tighter targets, they would make different technology choices in the near term, largely turning away from increased use of coal immediately.  相似文献   

6.
Future global emissions of aerosols will play an important role in governing the nature and magnitude of future anthropogenic climate change. We present in this paper a number of future scenarios of emissions of black carbon (BC) and organic carbon (OC) by world region, which we combine with sulfate (SO4) assessed in terms of the emissions of its precursor, SO2. We find that aerosol emissions from the household and industrial sectors are likely to decline along almost all future pathways. Transportation emissions, however, are subject to complex interacting forces that can lead to either increases or decreases. Biomass burning declines in many scenarios, but the Amazon rainforests remain vulnerable if unsustainable economic growth persists. East Asia is the key region for primary aerosols, and trends in China will have a major bearing on the direction and magnitude of releases of BC (expected reductions in the range of 640–1290 Gg), OC (reductions of 520–1900 Gg), and SO2 (ranging from an increase of 21 Tg to a reduction of 30 Tg). Analysis of joint BC, OC, and SO2 emission changes identifies a number of key world regions and economic sectors that could be effectively targeted for aerosol reductions.  相似文献   

7.
针对亚硫酸盐制浆造纸废液中段水可生化降解CODB与不可生化降解CODNB各半的水质特点,采用二级好氧悬浮生物填料浮动床处理及物化絮凝处理的工艺试验,取得了有关试验数据;并根据COD容积负荷与出水残留COD的关系,探讨了利用酶反应动力学曲线预测试验稳定运行状态下出水CODB值。结果表明:利用生化—絮凝两处理技术的优势互补,可使最终排水COD与BOD同时达到国家造纸工业水污染物排放标准。  相似文献   

8.
悬浮生物填料床-絮凝工艺处理亚硫酸盐制浆中段水研究   总被引:1,自引:1,他引:0  
针对亚硫酸盐制浆造纸废液中段水可生化降解CODB与不可生化降解CODNB各半的水质特点,采用二级好氧悬浮生物填料浮动床处理及物化絮凝处理的工艺试验,取得了有关试验数据;并根据COD容积负荷与出水残留COD的关系,探讨了利用酶反应动力学曲线预测试验稳定运行状态下出水CODB值。结果表明:利用生化—絮凝两处理技术的优势互补,可使最终排水COD与BOD同时达到国家造纸工业水污染物排放标准。  相似文献   

9.
Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24?h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant??s concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1?C8?days, time scales that are associated with the passage of weather events, such as cold fronts.  相似文献   

10.
We estimate the domestic environmental and health benefits of exploiting China's energy-related CDM potential. Exploiting the CDM potential may save between 3,000 and 40,000 lives annually. Additional gains are estimated to reach upwards from 1 billion RMB annually. The key to these gains is the fact that actions and measures to reduce CO2 emissions also reduce emissions of TSP and SO2. In our estimate, exploiting the CDM-potential will cut SO2-emissions by between one-half and three million tons annually. To arrive at these conclusions we synthesize a significant body of recent research on co-benefits of climate abatement in China.  相似文献   

11.
以二级生化出水为对象,采用4种常规除磷剂开展了化学法深度除磷和投药量经验系数法研究.研究结果表明,FeCl3在pH为7.5、投加量为6.5 mg/L条件下,Al2(SO4)3在pH为6、投加量为3.75 mg/L条件下,可使出水总磷小于0.5 mg/L,且处理费用低廉,是生化出水深度除磷的适宜药剂.FeCl3在除磷的同时,对COD也具有较好的去除效果,可作为总磷和COD均超标的二级生化出水深度处理的有效途径.投药量经验系数法可根据原水和出水的磷质量浓度,估算出除磷剂投加量,在工程实践中具有较大的参考价值.  相似文献   

12.
Individual countries are requested to submit nationally determined contributions(NDCs) to alleviate global warming in the Paris Agreement. However, the global climate effects and regional contributions are not explicitly considered in the countries’ decision-making process. In this study, we evaluate the global temperature slowdown of the NDC scenario(?T =0.6°C) and attribute the global temperature slowdown to certain regions of the world with a compact earth system model.Considering reductions ...  相似文献   

13.
Low-meat and no-meat diets are increasingly acknowledged as sustainable alternatives to current Western food consumption patterns. Concerns for the environment, individual health or animal welfare are raising consumers’ willingness to adopt such diets. Dietary shifts in Western countries may modify the way human-environment systems interact over distances, primarily as a result of existing trade flows in food products. Global studies have focused on the amount of water, land, and CO2 emissions embodied in plant-based versus animal-based proteins, but the potential of alternative diets to shift the location of environmental impacts has not yet been investigated. We build on footprint and trade-based analyses to compare the magnitude and spatial allocation of the impacts of six diets of consumers in the United States of America (USA). We used data on declared diets as well as a stylized average diet and a recent dietary guideline integrating health and environmental targets. We demonstrate that low-meat and no-meat diets have a lower demand for land and utilize more crops with natural nitrogen fixation potential, yet also rely more widely on pollinator abundance and diversity, and can increase impacts on freshwater ecosystems in some countries. We recommend that governments carefully consider the local impacts of the alternative diets they promote, and minimize trade-offs between the global and local consequences of dietary shifts through regulation or incentives.  相似文献   

14.
Today, the agricultural sector accounts for approximately 15% of total global anthropogenic emissions, mainly methane and nitrous oxide. Projecting the future development of agricultural non-CO2 greenhouse gas (GHG) emissions is important to assess their impacts on the climate system but poses many problems as future demand of agricultural products is highly uncertain. We developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO2 GHG emissions from various agricultural activities by combining socio-economic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields. In this article we describe how agricultural non-CO2 GHG emissions are implemented within MAgPIE and compare our simulation results with other studies. Furthermore, we apply the model up to 2055 to assess the impact of future changes in food consumption and diet shifts, but also of technological mitigation options on agricultural non-CO2 GHG emissions. As a result, we found that global agricultural non-CO2 emissions increase significantly until 2055 if food energy consumption and diet preferences remain constant at the level of 1995. Non-CO2 GHG emissions will rise even more if increasing food energy consumption and changing dietary preferences towards higher value foods, like meat and milk, with increasing income are taken into account. In contrast, under a scenario of reduced meat consumption, non-CO2 GHG emissions would decrease even compared to 1995. Technological mitigation options in the agricultural sector have also the capability of decreasing non-CO2 GHG emissions significantly. However, these technological mitigation options are not as effective as changes in food consumption. Highest reduction potentials will be achieved by a combination of both approaches.  相似文献   

15.
In Northeast Asia, the effect of long-range transport of air pollutants is generally pronounced in spring and winter, but can be important even in summer. This study analyzed summer-time atmospheric transport of elemental carbon (EC) and sulfate (SO4 2?) with the Community Multiscale Air Quality (CMAQ) model driven by the Weather Research and Forecasting (WRF) model. The WRF/CMAQ modeling system was applied to regions ranging from Northeast Asia to the Greater Tokyo Area in Japan in summer 2007. In terms of EC, while the model simulated well the effect of long-range transport, the simulation results indicated that domestic emissions in Japan dominantly contributed (85%) to EC concentrations in the Greater Tokyo. In terms of SO4 2?, the simulation results indicated that both domestic emissions (62%) and long-range transport from the other countries (38%) substantially contributed to SO4 2? concentrations in the Greater Tokyo. Distinctive transport processes of SO4 2? were associated with typical summer-time meteorological conditions in the study region. When a Pacific high-pressure system covered the main island of Japan, domestic emissions, including volcanic emission, dominantly contributed to SO4 2? concentrations in the Greater Tokyo. When a high-pressure system prevailed over the East China Sea and low-pressure systems passed north of Japan, synoptic westerly winds associated with this pressure pattern transported a large amount of SO4 2? from the continent to Japan. In addition, although heavy precipitation and strong wind decreased SO4 2? concentrations near the center of a typhoon, peripheral typhoon winds occasionally played an important role in long-range transport of SO4 2?.  相似文献   

16.
China has pledged to meet a series of political targets on energy and environmental performance, including a target of a 15% non-fossil fuel share in total energy use by 2020. Achieving this target requires expansion of non-fossil energy and restraining energy use, which has implications for achieving the 40–45% carbon intensity reduction target. The present study outlines quantitative formulas to measure the nexus between the dynamics of GDP, energy, and carbon intensity. Considering a ‘likely’ scenario of the non-fossil fuel expansion envisioned by the Chinese government and a GDP growth rate of 8% per annum, the key to accomplishing both targets is to restrain energy consumption to attain an energy elasticity to GDP of approximately 0.53. Both targets can be achieved simultaneously with the existing non-fossil expansion plan and are within the ‘normal’ range of GDP growth seen in China over the long term. This is, however, less than the value realized over the last 10 years. To comply with the non-fossil fuel target, the potentially slower expansion of nuclear power capacity must be compensated for by other non-fossil options. Otherwise, there must be a greater attempt to decouple energy demand and economic growth in order to realize a smaller energy elasticity to GDP.

Policy relevance

China has pledged to achieve a 15% non-fossil fuel share and reduce its carbon intensity by 40–45% by 2020. The key to accomplishing both targets is to restrain energy consumption and promote the development of non-fossil fuels. The achievement of these two targets by 2020 is analysed between share of non-fossil fuel, CO2 intensity of energy and GDP, and energy elasticity in relation to GDP. This analysis can inform the governmental energy and climate policy on the scale and pace of non-fossil fuel development, and the prerequisite regarding the energy elasticity to GDP to achieve the targets. The impacts of slower expansion of nuclear power capacity on the target achievement and implied elasticity of energy to GDP are also provided, which is close to the policy choice and actions of government on energy saving and emissions reduction.  相似文献   

17.
In this paper, benefits from increasing cross-border cooperation under future CO2 commitments in the Nordic countries are examined and evaluated. Four cooperative strategies are analyzed and valued separately: cross-border electricity trade, cross-border emission-permit trade, the introduction of a trans-Nordic natural gas transmission grid, and, finally, utilization of all these three strategies simultaneously. The valuation is done under varying CO2 commitments and under three different scenarios for future energy demand and technological development. In conducting this analysis, the energy-systems model-generator MARKAL (MARKet ALlocation) was used to model the Nordic energy system. It is shown that all cooperative strategies do lower the abatement costs considerably, especially if the strategy including full cooperation is utilized. In this case, additional costs from meeting CO2 targets may be at least halved for commitments less than 10% reduction until 2050 based on emissions in 1995. No significant difference between low and high CO2 commitments could be observed in the size of the benefits from cooperation, expressed in billions (109) of Swedish crowns. Benefits from cooperation are generally larger for scenarios including relatively higher future energy demand.  相似文献   

18.
Research flights with the National Center for Atmospheric Research (NCAR) C-130 airborne laboratory were conducted over the equatorial ocean during the Pacific Atmospheric Sulfur Experiment (PASE). The focused, repetitive flight plans provided a unique opportunity to explore the principal pathways of sulfur processing in remote marine environments in close detail. Fast airborne measurements of SO2 using the Drexel University APIMS (Atmospheric Pressure Ionization Mass Spectrometer) instrument further provided unprecedented insight into the complete budget of this important sulfur gas. In general, turbulent mixing in the marine boundary layer (MBL) continuously depletes SO2 due to the shallow convection of the tropical trade wind regime by venting the gas into the buffer layer (BuL) above. However, on nearly one-third of the flights a net import of SO2 into the MBL from the BuL was observed. Concurrent measurements of the DMS budget allowed for a heterogeneous S(IV) oxidation rate to be inferred from the SO2 budget residual. The average heterogeneous loss rate was found to be 0.05 h−1, which taken in conjunction with the observed aerosol surface area distributions and O3 levels indicates that the supermicron aerosols maintain a near neutral pH. The average dry deposition velocity of SO2 was found to be 0.4 cm s−1, about 30% lower than predicted by standard parameterizations. The yield of SO2 from DMS oxidation was found to be near unity. The mission averages indicate that approximately 57% of the SO2 in the MBL is lost to aerosols, 27% is subject to dry deposition, 7% is mixed into the BuL, and 10% is oxidized by OH.  相似文献   

19.
Copper is widely used in modern technology, but declining ore grades and depletion of natural deposits have raised concerns regarding sustainable demand-supply balance in the long term. The vulnerability to primary copper supply restrictions amplifies for countries dependant on imports, notably many EU Member States. Recycling of post-consumer scrap can provide a valuable source of essential material to the European industry. However, a considerable fraction of collected and processed copper old scrap is exported, while the remaining fraction is either not recovered or lost due to nonfunctional recycling undermining the implementation of a circular economy. In this work, material flow analysis, regression analysis, and life cycle assessment are combined to explore the possible evolution of four scenarios of copper demand in Europe to year 2050 and the potentials for greenhouse gas emissions reduction under material circularity conditions.The results show that for three of the four scenarios, secondary production would not comply with the carbon dioxide emissions reduction target of 50% below 2000 levels neither in case of combined aggressive recycling, moderate decarbonization of electricity, and energy efficiency improvements. In particular, for the scenario that describes a “business as usual” approach, the modelled future domestic demand can only be met by increasing primary inputs and, despite strong efforts to improve recycling at end-of-life, the fraction of old scrap in total metal demand seems likely to achieve 65% at best. Should that scenario ensue, the GHG emissions embodied in EU copper demand might result in an emissions gap of more than 15 TgCO2eq or about +260% the carbon dioxide reduction target. In contrast, the lowest environmental impacts are associated with a scenario emphasizing green technology and more equitable lifestyles. In that scenario, the secondary copper flows will gradually approach the expected demand, laying the foundation for achieving a circular economy with considerable potential for preserving natural capital and mitigating climate change. This possible future, however, requires dramatic changes in the current pattern of material production and consumption, as we discuss.  相似文献   

20.
Products and mechanisms have been investigated for the reactions between dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) and the hydroxyl radical (OH) in the presence of NOx. All of the experiments were performed in a 480 L reaction chamber, applying Fourier transform infrared spectroscopy (FT-IR) and ion chromatography as the analytical techniques.In addition to the sulfur containing products that are known to be produced from the gas phase reaction between DMS and OH (SO2, dimethylsulfone, methylsulfonyl peroxynitrate, methanesulfonic acid, H2SO4), DMSO and methanesulfinic acid (CH3S(O)OH) were also observed as products. Only SO2, DMSO2 and methylsulfonyl peroxynitrate were found as sulfur containing products in the reaction between DMSO and OH. Based on these new results we propose a mechanism for the atmospheric oxidation of DMS and DMSO by OH radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号