首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Carl A. Rouse 《Solar physics》1986,106(2):205-216
The high-Z core (HZC) model of the Sun, supported in Rouse (1985) by superior agreements of nonradial g-mode periods of oscillation with long period observations, is used to calculate frequencies of oscillation in the five-minute band (5MB). Allowing for the fact that the present HZC model profile does not include an upper photosphere and self-consistent chromosphere, the HZC model of the Sun is also supported by the very good agreements of the 5MB nonradial frequencies of oscillation with observations for HZC l degrees 0 to 19 and orders n 20, and the good agreement of the HZC purely radial frequencies of oscillation with about the same n-orders with observations previously identified as l = 0 oscillations. Two important aspects of these agreements are (1) the nonradial frequencies were calculated with the equations that neglect the gravitational perturbation (the Cowling approximation), and (2) the radial frequencies were calculated with the equation that includes the gravitational perturbation. The present agreements suggest that for solar-type stars, the gravitational perturbation may not affect the nonradial p-modes of oscillation as much as it affects the radial modes and the nonradial g-modes. More research will be performed.  相似文献   

2.
The classification of adiabatic modes of non-radial stellar oscillation was established by Cowling in 1941. In addition to acoustic and gravity modes he identified an intermediate mode, which he labelled the f mode, and which in simple stellar models has no radial node. The motion of a dipolar f mode (of spherical-harmonic degree l =1) shifts the centre of mass, and must have zero frequency. On the other hand, if the perturbation to the gravitational potential is neglected (the case considered by Cowling) the f mode has a frequency intermediate between those of the gravity and acoustic modes; this is true of modes of any degree ( l ≥1) . Here we consider the properties of the dipolar f mode, elucidating the origin of these differences through continuous transformations between the various relevant cases; in addition, we discuss the broader issues of the classification of modes of non-radial oscillation.  相似文献   

3.
We study acoustic oscillations (eigenfrequencies, velocity distributions, damping times) of normal crusts of strange stars. These oscillations are very specific because of huge density jump at the interface between the normal crust and the strange matter core. The oscillation problem is shown to be self-similar. For a low (but non-zero) multipolarity l , the fundamental mode (without radial nodes) has a frequency of ∼300 Hz and mostly horizontal oscillation velocity; other pressure modes have frequencies ≳20 kHz and almost radial oscillation velocities. The latter modes are similar to radial oscillations (having approximately the same frequencies and radial velocity profiles). The oscillation spectrum of strange stars with crust differs from the spectrum of neutron stars. If detected, acoustic oscillations would allow one to discriminate between strange stars with crust and neutron stars and constrain the mass and radius of the star.  相似文献   

4.
An attempt has been made towards explaining the observed frequencies in 63 Her. The evolution of rotating stars of 1.96, 1.98, 2.00, 2.05 and 2.10 M have been studied up to a point where stellar parameters match the observed luminosity and effective temperature of 63 Her. Radial and nonradial adiabatic oscillation frequencies were obtained in low harmonic degrees ( l = 0,1,2,3 ). One radial and three nonradial frequency values that match with the observed values were found for the model of mass 2.00 M.  相似文献   

5.
Strong magnetic fields in relativistic stars can be a cause of crust fracturing, resulting in the excitation of global torsional oscillations. Such oscillations could become observable in gravitational waves or in high-energy radiation, thus becoming a tool for probing the equation of state of relativistic stars. As the eigenfrequency of torsional oscillation modes is affected by the presence of a strong magnetic field, we study torsional modes in magnetized relativistic stars. We derive the linearized perturbation equations that govern torsional oscillations coupled to the oscillations of a magnetic field, when variations in the metric are neglected (Cowling approximation). The oscillations are described by a single two-dimensional wave equation, which can be solved as a boundary-value problem to obtain eigenfrequencies. We find that, in the non-magnetized case, typical oscillation periods of the fundamental     torsional modes can be nearly a factor of 2 larger for relativistic stars than previously computed in the Newtonian limit. For magnetized stars, we show that the influence of the magnetic field is highly dependent on the assumed magnetic field configuration, and simple estimates obtained previously in the literature cannot be used for identifying normal modes observationally.  相似文献   

6.
We investigate the effect of a strong large-scale magnetic field on the reflection of high-frequency acoustic modes in rapidly oscillating Ap stars. To that end, we consider a toy model composed of an isothermal atmosphere matched on to a polytropic interior and determine the numerical solution to the set of ideal magnetohydrodynamic equations in a local plane-parallel approximation with constant gravity. Using the numerical solution in combination with approximate analytical solutions that are valid in the limits where the magnetic and acoustic components are decoupled, we calculate the relative fraction of energy flux that is carried away in each oscillation cycle by running acoustic waves in the atmosphere and running magnetic waves in the interior. For oscillation frequencies above the acoustic cut-off, we show that most energy losses associated with the presence of running waves occur in regions where the magnetic field is close to vertical. Moreover, by considering the depth dependence of the energy associated with the magnetic component of the wave in the atmosphere we show that a fraction of the wave energy is kept in the oscillation every cycle. For frequencies above the acoustic cut-off frequency, such energy is concentrated in regions where the magnetic field is significantly inclined in relation to the local vertical. Even though our calculations were aimed at studying oscillations with frequencies above the acoustic cut-off frequency, based on our results we discuss what results may be expected for oscillations of lower frequency.  相似文献   

7.
Using time evolutions of the relevant linearized equations, we study non-axisymmetric oscillations of rapidly rotating and superfluid neutron stars. We consider perturbations of Newtonian axisymmetric background configurations and account for the presence of superfluid components via the standard two-fluid model. Within the Cowling approximation, we are able to carry out evolutions for uniformly rotating stars up to the mass-shedding limit. This leads to the first detailed analysis of superfluid neutron star oscillations in the fast rotation regime, where the star is significantly deformed by the centrifugal force. For simplicity, we focus on background models where the two fluids (superfluid neutrons and protons) corotate, are in β-equilibrium and co-exist throughout the volume of the star. We construct sequences of rotating stars for two analytical model equations of state. These models represent relatively simple generalizations of single fluid, polytropic stars. We study the effects of entrainment, rotation and symmetry energy on non-radial oscillations of these models. Our results show that entrainment and symmetry energy can have a significant effect on the rotational splitting of non-axisymmetric modes. In particular, the symmetry energy modifies the inertial mode frequencies considerably in the regime of fast rotation.  相似文献   

8.
The measured properties of stellar oscillations can provide powerful constraints on the internal structure and composition of stars. To begin this process, oscillation frequencies must be extracted from the observational data, typically time series of the star's brightness or radial velocity. In this paper, a probabilistic model is introduced for inferring the frequencies and amplitudes of stellar oscillation modes from data, assuming that there is some periodic character to the oscillations, but that they may not be exactly sinusoidal. Effectively, we fit damped oscillations to the time series, and hence the mode lifetime is also recovered. While this approach is computationally demanding for large time series (>1500 points), it should at least allow improved analysis of observations of solar-like oscillations in subgiant and red giant stars, as well as sparse observations of semiregular stars, where the number of points in the time series is often low. The method is demonstrated on simulated data and then applied to radial velocity measurements of the red giant star  ξ Hydrae  , yielding a mode lifetime between 0.41 and 2.65 d with 95 per cent posterior probability. The large frequency separation between modes is ambiguous, however we argue that the most plausible value is 6.3 μHz, based on the radial velocity data and the star's position in the Hertzsprung–Russell diagram.  相似文献   

9.
We have performed a detailed systematic search for multiperiodicity in the Population I Cepheids of the Large Magellanic Cloud. In this process, we have identified for the first time several new types of Cepheid pulsational behaviour. We have found two triple-mode Cepheids pulsating simultaneously in the first three radial overtones. In 9 per cent of the first overtone (FO) Cepheids, we have detected weak but well-resolved secondary periodicities. They appear either very close to the primary pulsation frequency or at a much higher frequency with a characteristic period ratio of 0.60–0.64. In either case, the secondary periodicities must correspond to non-radial modes of oscillation. This result presents a major challenge to the theory of stellar pulsations, which predicts that such modes should not be excited in Cepheid variables. Non-radial modes have also been found in three of the fundamental first overtone (FU/FO) double-mode Cepheids, but no such oscillations have been detected in single-mode Cepheids pulsating in the FU mode.
In 19 per cent of double-mode Cepheids pulsating in the first two radial overtones (FO/SO type), we have detected a Blazhko-type periodic modulation of amplitudes and phases. Both modes are modulated with a common period, which is always longer than 700 d. Variations of the two amplitudes are anticorrelated, and maximum of one amplitude always coincides with minimum of the other. We have compared observations of modulated FO/SO Cepheids with predictions of theoretical models of the Blazhko effect, showing that the currently most popular models cannot account for properties of these stars. We propose that the Blazhko effect in FO/SO Cepheids can be explained by a non-stationary resonant interaction of one of the radial modes with another, perhaps non-radial, mode of oscillations.  相似文献   

10.
Quasi-toroidal oscillations in slowly rotating stars are examined within the framework of general relativity. Unlike the Newtonian case, the oscillation frequency to first order of the rotation rate is not a single value, even for uniform rotation. All the oscillation frequencies of the r -modes are purely neutral and form a continuous spectrum limited to a certain range. The allowed frequencies are determined by the resonance condition between the perturbation and the background mean flow. The resonant frequency varies with the radius according to the general relativistic dragging effect.  相似文献   

11.
We study the possibility of the excitation of non-radial oscillations in classical pulsating stars. The stability of an RR Lyrae model is examined through non-adiabatic non-radial calculations. We also explore stability in the presence of non-linear coupling between radial and non-radial modes of nearly identical frequency.   In our model, a large number of unstable low-degree (ℓ = 1,2) modes have frequencies in the vicinity of unstable radial mode frequencies. The growth rates of such modes, however, are considerably smaller than those of the radial modes. We also recover an earlier result that at higher degrees (ℓ = 6–12) there are modes trapped in the envelope with growth rates similar to those of radial modes.   Subsequently, monomode radial pulsation of this model is considered. The destabilizing effect of the 1:1 resonance between the radial mode and nearby non-radial modes of low degrees is studied, with the assumption that the excited radial mode saturates the linear instability of all other modes. The instability depends on the radial mode amplitude, the frequency difference, the damping rate of the non-radial mode, and the strength of the non-linear coupling between the modes considered. At the pulsation amplitudes typical for RR Lyrae stars, the instability of the monomode radial pulsation and the concomitant resonant excitation of some non-radial oscillation modes is found to be very likely.  相似文献   

12.
We applied the aton evolutionary code to the computation of detailed grids of standard (non-rotating) and rotating pre-main sequence (PMS) models and computed their adiabatic oscillation spectra, with the aim of exploring the seismic properties of young stars. As, until now, only a few frequencies have been determined for ∼40 PMS stars, the way of approaching the interpretation of the oscillations is not unique. We adopt a method similar to the matching mode method by Guenther and Brown making use, when necessary, also of our rotating evolutionary code to compute the models for PMS stars. The method is described by a preliminary application to the frequency spectrum of two PMS stars (85 and 278) in the young open cluster NGC 6530. For the Star 85, we confirm with self-consistent rotating models, previous interpretation of the data, attributing three close frequencies to the mode   n = 4, l = 1  and   m = 0  , +1 and −1. For the Star 278, we find a different fit for the frequencies, corresponding to a model within the original error box of the star, and dispute the possibility that this star has a T eff much cooler that the red boundary of the radial instability strip.  相似文献   

13.
14.
Three-color photoelectric UBV light curves of the close binary system V448 Cyg obtained at the Abastumani Astrophysical Observatory are analyzed using a new code by Djurasevi. A new value for the ratio of the masses of the components, which is the fundamental parameter for determining the absolute elements of the system, has recently been published. The parameters obtained in our analysis differ substantially from those published previously because the new mass ratio has been employed. The location of the components of V448 Cyg on a mass-logg plot shows that this system, similarly to XZ Cep and V382 Cyg, is in a phase subsequent to a rapid transfer of mass.Translated from Astrofizika, Vol. 48, No. 1, pp. 59–68 (February 2005).  相似文献   

15.
Using our non-local time-dependent theory of convection, the linear non-adiabatic oscillations of 10 evolutionary model series with masses of  1–3 M  are calculated. The results show that there is a red giant instability strip in the lower temperature side of the Hertzsprung–Russell diagram which goes along the sequences of the red giant branch and the asymptotic giant branch. For red giants of lower luminosities, pulsation instability is found at high order overtones; the lower order modes from the fundamental to the second overtone are stable. Towards higher luminosity and lower effective temperature, instability moves to lower order modes, and the amplitude growth rate of oscillations also grows. At the high luminosity end of the strip, the fundamental and the first overtone become unstable, while all the modes above the fourth order become stable. The excitation mechanisms have been studied in detail. It is found that turbulent pressure plays a key role for excitation of red variables. The frozen convection approximation is unavailable for the low temperature stars with extended convective envelopes. In any case, this approximation can explain neither the red edge of the Cepheid instability strip, nor the blue edge of the pulsating red giant instability strip. An analytic expression of a pulsation constant as a function of stellar mass, luminosity and effective temperature is presented from this work.  相似文献   

16.
17.
We present charge-coupled device (CCD) photometry, light curve and time-series analysis of the classical nova V2275 Cyg (N Cyg 2001 No. 2). The source was observed for 14 nights in total in 2002 and 2003 using an R filter with the 1.5-m Russian–Turkish joint telescope (RTT150) at the TUBITAK National Observatory in Antalya, Turkey, as part of a large programme on the CCD photometry of cataclysmic variables. We report the detection of two distinct periodicities in the light curve of the nova: (a)   P 1= 0.314 49(15) d [7.6 h]  , and (b)   P 2= 0.017 079(17) d [24.6 min]  . The first period is evident in both 2002 and 2003 whereas the second period is only detected in the 2003 data set. We interpret the first period as the orbital period of the system and attribute the orbital variations to aspect changes of the secondary irradiated by the hot white dwarf (WD). We suggest that the nova was a supersoft X-ray source in 2002 and, perhaps, in 2003. The second period could be a quasi-periodic oscillation originating from the oscillation of the ionization front (due to a hot WD) below the inner Lagrange point or a beat frequency in the system as a result of the magnetic nature of the WD if steady accretion has already been re-established.  相似文献   

18.
The first results of numerical analysis of classical r-modes of rapidly rotating compressible stellar models are reported. The full set of linear perturbation equations of rotating stars in Newtonian gravity is solved numerically without the slow rotation approximation. A critical curve of gravitational wave emission induced instability, which restricts the rotational frequencies of hot young neutron stars, is obtained. Taking the standard cooling mechanisms of neutron stars into account, we also show the 'evolutionary curves' along which neutron stars are supposed to evolve as cooling and spinning down proceed. Rotational frequencies of 1.4-M stars suffering from this instability decrease to around 100 Hz when the standard cooling mechanism of neutron stars is employed. This result confirms the results of other authors, who adopted the slow rotation approximation.  相似文献   

19.
The dense molecular cloud cores that form stars, like other self-gravitating objects, undergo bulk oscillations. Just at the point of gravitational instability, their fundamental oscillation mode has zero frequency. We study, using perturbation theory, the evolution of a spherical cloud that possesses such a frozen mode. We find that the cloud undergoes a prolonged epoch of subsonic, accelerating contraction. This slow contraction occurs whether the cloud is initially inflated or compressed by the oscillation. The subsonic motion described here could underlie the spectral infall signature observed in many starless dense cores.  相似文献   

20.
We present the spectroscopy of nova V2467 Cyg acquired at the Loiano Observatory, Italy, during the first six months after the outburst. We have used the optical spectroscopy to study the physical properties of the ejected material and the photometry to estimate the nova distance. V2467 Cyg is a fast nova, with decline rates by two or three magnitudes of 7.6 and 14.6 days respectively. The light curve exhibited oscillations during the transition stage. The nova achieved an absolute magnitude at maximum in the range –8.5… –9.1. The distance is in the range 2.6… 3.6 kpc. V2467 Cyg showed an early appearance of forbidden lines during the transition stage. Its evolution is similar to the behavior of V1494 Aql (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号