首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a critical analysis of the usual interpretation of the multicolour disc model parameters for black hole candidates in terms of the inner radius and temperature of the accretion disc. Using a self-consistent model for the radiative transfer and the vertical temperature structure in a Shakura–Sunyaev disc, we simulate the observed disc spectra, taking into account Doppler blurring and gravitational redshift, and fit them with multicolour models. We show not only that such a model systematically underestimates the value of the inner-disc radius, but that when the accretion rate and/or the energy dissipated in the corona are allowed to change, the inner edge of the disc, as inferred from the multicolour model, appears to move even when it is in fact fixed at the innermost stable orbit.  相似文献   

2.
3.
4.
The transfer of energy and angular momentum in the magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc is discussed based on a mapping relation derived by considering the conservation of magnetic flux with two basic assumptions: (i) the magnetic field on the horizon is constant, (ii) the magnetic field on the disc surface varies as a power law with the radial coordinate of the disc. The following results are obtained: (i) the transfer direction of energy and angular momentum between the BH and the disc depends on the position of a co-rotation radius relative to the MC region on the disc, which is eventually determined by the BH spin; (ii) the evolution characteristics of a rotating BH in the MC process without disc accretion are depicted in a parameter space, and a series of values of the BH spin are given to indicate the evolution characteristics; (iii) the efficiency of converting accreted mass into radiation energy of a BH–disc system is discussed by considering the coexistence of disc accretion and the MC process; (iv) the MC effects on disc radiation and the emissivity index are discussed and it is concluded that they are consistent with the recent XMM–Newton observation of the nearby bright Seyfert 1 galaxy MCG–6-30-15 with reference to a variety of parameters of the BH–disc system.  相似文献   

5.
6.
7.
We examine the radial motion of a material particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. This paper generalizes previous work which dealt with radial motion in the Thomson limit, where the radiation force is simply proportional to the radiative flux. In the general case the average time component of the 4-momentum transferred to the particle is not negligible compared with its rest mass. Consequently, we find that the frequency dependence of the radiation force owing to Compton scattering for highly energetic photons gives rise to an increase in the effective mass of the test particle. In this work we outline the effects of this frequency dependence and compare these with the results in the Thomson limit. We present the frequency dependent saturation velocity curves for a range of stellar luminosities and radiation frequencies and present the resulting phase-space diagrams corresponding to the radial test particle trajectories. In particular, the stable equilibrium points which exist in the Thomson limit are found to be absent in the general case.  相似文献   

8.
9.
Ultraluminous X-ray sources (ULXs) with   L x > 1039 erg s−1  have been discovered in great numbers in external galaxies with ROSAT , Chandra and XMM-Newton . The central question regarding this important class of sources is whether they represent an extension in the luminosity function of binary X-ray sources containing neutron stars and stellar-mass black holes (BHs), or a new class of objects, e.g. systems containing intermediate-mass BHs  (100–1000 M)  . We have carried out a theoretical study to test whether a large fraction of the ULXs, especially those in galaxies with recent star formation activity, can be explained with binary systems containing stellar-mass BHs. To this end, we have applied a unique set of binary evolution models for BH X-ray binaries, coupled to a binary population synthesis code, to model the ULXs observed in external galaxies. We find that for donor stars with initial masses  ≳10 M  the mass transfer driven by the normal nuclear evolution of the donor star is sufficient to potentially power most ULXs. This is the case during core hydrogen burning and, to an even more pronounced degree, while the donor star ascends the giant branch, although the latter phases last only ∼5 per cent of the main-sequence phase. We show that with only a modest violation of the Eddington limit, e.g. a factor of ∼10, both the numbers and properties of the majority of the ULXs can be reproduced. One of our conclusions is that if stellar-mass BH binaries account for a significant fraction of ULXs in star-forming galaxies, then the rate of formation of such systems is  ∼3 × 10−7 yr−1  normalized to a core-collapse supernova rate of 0.01 yr−1.  相似文献   

10.
We investigate the runaway instability of configurations consisting of a massive dense but non-self-gravitating thick disc/torus surrounding a massive black hole (MBH). We limit our model parameters to values that result in a self-consistent thick disc around an MBH. We identify, analytically, the index of the angular momentum distribution that will form a thick disc as an initial equilibrium state, and obtain the mass ratio of the disc to the central black hole for which the disc is dominated by the radiation pressure. In our theoretical framework we find that a self-consistent thick disc with constant angular momentum leads to a runaway instability on a dynamical time-scale. However, even a slight increase of the specific angular momentum outwards has a strong stabilizing effect on the accretion process. Finally, we discuss our results and present possible applications to high-energy emission.  相似文献   

11.
12.
13.
Several integration schemes exist to solve the equations of motion of the N -body problem. The Lie-integration method is based on the idea to solve ordinary differential equations with Lie-series. In the 1980s, this method was applied to solve the equations of motion of the N -body problem by giving the recurrence formulae for the calculation of the Lie-terms. The aim of this work is to present the recurrence formulae for the linearized equations of motion of N -body systems. We prove a lemma which greatly simplifies the derivation of the recurrence formulae for the linearized equations if the recurrence formulae for the equations of motions are known. The Lie-integrator is compared with other well-known methods. The optimal step-size and order of the Lie-integrator are calculated. It is shown that a fine-tuned Lie-integrator can be 30–40 per cent faster than other integration methods.  相似文献   

14.
15.
We present the results of both analytical and numerical calculations of the amplitude of the reflection component in X-ray spectra of galactic black hole systems. We take into account the anisotropy of Compton scattering and the systematic relativistic bulk motion of the hot plasma. In the case of the single scattering approximation, the reflection from the disc surface is significantly enhanced owing to the anisotropy of Compton scattering. On the other hand, the calculations of multiple scattering obtained using the Monte Carlo method show that the anisotropy effect is much weaker in that case. Therefore, the enhanced back-scattered flux may affect the observed spectra only if the disc surface is highly ionized, which reduces the absorption in the energy band corresponding to the first Compton scattering.  相似文献   

16.
The influence of a linearized perturbation on stationary inflow solutions in an inviscid and thin accretion disc has been studied here, and it has been argued that a perturbative technique would indicate that all possible classes of inflow solutions would be stable. The choice of the driving potential, Newtonian or pseudo-Newtonian, would not particularly affect the arguments which establish the stability of solutions. It has then been surmised that in the matter of the selection of a particular solution, adoption of a non-perturbative technique, based on a more physical criterion, as in the case of the selection of the transonic solution in spherically symmetric accretion, would give a more conclusive indication concerning the choice of a particular branch of the flow.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号