首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超临界态流体具有接近液体的密度、高于液体的扩散系数和低于液体的粘度等不寻常特性。在地球内部,伴随板块俯冲带入的水等流体进入超临界态,并与壳幔物质混合及相互作用会形成对地球内部结构演化、元素和能量运移有重要影响的流体,即超临界地质流体。然而,目前对于超临界地质流体的性质、作用的认识还极其有限,准确测定超临界流体的物理性质更是严峻挑战。金刚石对顶砧装置(DAC)的优势就是适合极端条件下原位物性探测,这对于超临界地质流体研究是不可或缺的。本文基于金刚石对顶砧装置原位加温的技术特点,对超临界地质流体物性测量的有关问题进行了讨论,并扼要回顾了超临界流体物性研究的进展。  相似文献   

2.
目前对超临界地质流体的形成条件、成分、结构和物理化学性质的认识还不是特别清晰,分子模拟作为一种方兴未艾的理论研究手段,正在被广泛应用于地球科学领域。本文简述了目前采用分子模拟研究硅酸盐熔体、含水硅酸盐熔体、富水流体以及超临界地质流体所取得的主要成果,侧重讨论分子模拟方法在其中的应用,为超临界地质流体的计算模拟研究提供帮助,并展望了超临界地质流体分子模拟可能遇到的挑战和发展趋势。已有研究结果表明,不同分子模拟方法各有优缺点,相对于精度较低的经典分子动力学方法而言,采用一般泛函的第一性原理方法加上色散校正之后,可以满足目前对超临界地质流体研究的精度需要。另外,机器学习和第一性原理方法结合,以及建立相关热力学模型将是推进与超临界地质流体相关研究的有效途径。  相似文献   

3.
倪怀玮 《矿物岩石地球化学通报》2020,39(3):前插1-前插2,443-447
在地球深部(特别是俯冲带)的高温高压条件下,硅酸盐和水的相互溶解能力增强,可以形成成分介于常规硅酸盐熔体和富水流体之间的超临界地质流体。超临界流体的形成条件主要取决于岩石-H_2O体系的临界曲线、湿固相线和第二临界端点的位置。超临界地质流体具有特殊的物理化学性质,能够在促成俯冲带物质循环、迁移和富集元素成矿、引发中深源地震、影响地表宜居性演化等方面发挥关键作用。通过高温高压实验、分子模拟计算、天然岩石和矿床样品等手段研究超临界地质流体的性质和效应仍存在巨大挑战,亟需变革性实验和计算技术突破。  相似文献   

4.
在地球深部(特别是俯冲带)的高温高压条件下,硅酸盐和水的相互溶解能力增强,可以形成成分介于常规硅酸盐熔体和富水流体之间的超临界地质流体。超临界流体的形成条件主要取决于岩石-H2O体系的临界曲线、湿固相线和第二临界端点的位置。超临界地质流体具有特殊的物理化学性质,能够在促成俯冲带物质循环、迁移和富集元素成矿、引发中深源地震、影响地表宜居性演化等方面发挥关键作用。通过高温高压实验、分子模拟计算、天然岩石和矿床样品等手段研究超临界地质流体的性质和效应仍存在巨大挑战,亟需变革性实验和计算技术突破。  相似文献   

5.
超临界流体是有别于富水流体和含水熔体的一种低粘度、高迁移性和高元素携带能力的一类流体,在变质岩体系中,其形成的温压条件一般高于对应的H_2O-岩体系的第二临界端点。俯冲带岩石是自然界最有可能保存超临界流体活动记录的地方,而超临界流体的活动对于地球内部物质循环、俯冲带岩浆作用和俯冲带成矿等方面可以发挥巨大作用。目前对于天然岩石和矿床样品中超临界流体的识别仍处于经验推测阶段,缺乏定量的岩相学和地球化学指标。本文主要基于目前已有研究结果,介绍自然体系中超临界流体的地质特征,包括俯冲带超高压变质岩、高压-超高压脉体以及地幔楔岩石中的超临界流体记录,主要是一些多相包裹体及元素迁移变化的记录,最后讨论超临界流体的相分离与岛弧岩浆作用之间的关系。  相似文献   

6.
试论地球内部流体与地质作用——现代地质科学研究思考   总被引:11,自引:0,他引:11  
把以地球固体部分作为主要研究对象所建立起来的地质科学称为传统地质科学,它只在该学科研究的起点——沉积地质学和学科研究的最终目的——成矿地质学两个领域不自觉地将地球内部流体放到了重要地位,而在其间的绝大多数研究则忽略了对地球内部流体的讨论,在其原有的知识体系范围内已找不到关于地球内部物质和能量转移、转换等方面所存在的大量问题的解决途径和完整答案。现代地质科学的发展已经开始将地球内部流体作为主要研究对象,并将其贯穿到了所有地质学研究的领域当中。其基本出发点应是:地球内部流体广泛存在,并永不停息地运动着,它与固体地球部分同样重要,是现代地质科学研究的主要对象。它不仅在各种地质作用中起着极其重要的作用, 而且, 它基本上可以认为是一切地质作用的最初根源, 也就是说, 流体作用贯穿于一切地质作用( 包括构造活动、岩浆作用、变质作用、沉积作用、成矿作用、地质自然灾害等) 过程的始终。地球内部一切地质作用又通过地球内部流体有机地统一在一起。可将地球内部流体按其与特定地质作用的关系划分为具包含循环性质的初始流体、过程流体和终结流体三类。针对目前的研究大量地集中在过程流体和终结流体方面的现状, 在体现现代地质科学和传统地质科学本质区别的地质作用初始流体方面进行了系统整理和论述, 并提出了可能成为现代地质科学基础性学科的(地球内部) 流体统一地质学。  相似文献   

7.
超临界流体的研究进展及其对成矿地球化学研究的启示   总被引:8,自引:2,他引:8  
温志坚  毛景文 《地质论评》2002,48(1):106-112
本文综述了超临界流体的研究进展,结合多年从事矿床地球化学研究的经历,认为近年来蓬勃发展的超临界流体研究,尤其是超临界条件下的化学反应对于研究地球内部成矿元素的迁移、富集有重要的启示意义。另外,对超临界流体化学对成矿流体研究可能带来的新的研究思路和新的理论认识作了理论探讨。  相似文献   

8.
由中国科学院广州地球化学研究所及成矿动力学重点实验室、中国科学院地球化学研究所及矿床地球化学国家重点实验室、广东省地质学会、广东省科协、广州市科协、中国矿物岩石地球化学学会矿物包裹体专业委员会等单位共同主办的"地质流体及流体包裹体研究国际学术会议暨全国第十五届流体及包裹体会议"于2007年11月7日~9日在广州市东山宾馆召开,这次会议成功举办得到了广东省地质学会、省市科协和东山宾馆的大力支持,会议于11月12日结束,取得了圆满的成功.  相似文献   

9.
在地球深部的富水环境下(如俯冲带和岩浆热液体系)可以形成超临界地质流体。本文在阐明矿物-H_2O体系(近似二元系)和多组分岩石-H_2O体系的相图和物相关系的基础上,探讨了超临界流体的形成条件。对于以固相为主的变质岩体系,超临界流体的形成条件主要取决于湿固相线终点(第二临界端点)的位置。现有的高温高压实验结果表明,常见岩石-H_2O体系的第二临界端点压力至少为4 GPa。对于岩浆热液体系,临界曲线是判断超临界流体(或称浆液过渡态流体)是否能够形成的重要标准,F和B等元素的存在可导致超临界流体的形成压力降至1 GPa以下。对天然岩石和矿床样品的研究也可以为超临界流体的形成条件提供重要制约。总的来说,从长英质岩石体系到镁铁质体系,形成超临界流体的温度和压力升高。关于超临界流体的形成条件目前仍存在很多争议,需要通过开发新的实验技术予以解决。  相似文献   

10.
在地球演化、地球物质循环、矿产资源形成和气候演化过程中,地质流体发挥至关重要的作用.可以说,如果没有地质流体的参与,这些过程很难发生.因此,揭示地质流体的物理化学性质是研究与流体有关的地球化学过程的关键.  相似文献   

11.
遍布于地球各圈层中的地质流体的性状与作用是 2 0世纪 80年代以来国际地球科学研究的重要前沿领域 ,并日益受到各国地学工作者的强烈关注。近年来有关地质流体的学术会议频频召开 ,关于地质流体的论著、文集也在不断地出版。可以说 ,地质流体给长期以固体地球物质为主要研究对象的地球科学提供了新的学科生长点。地质流体对地球内部发生的一切地质作用过程、各圈层地球物理结构与力学性质、地球化学演化都扮演着极其重要的角色。由于地质流体又担当了地球各圈层能量和质量传输的主要介质 ,因而也决定了壳 -幔物质与能量的再分配。大量的研…  相似文献   

12.
胡书敏  张荣华  张雪彤 《地质学报》2006,80(10):1588-1597
地球深部流体主要是NaCl-H2O溶液,越到地球深部,它赋存的温度、压力越高,性质状态也不断变化,反之,亦然。当NaCl-H2O流体进入和脱离(上升过程)超临界状态时,其性质会发生截然不同的变化,影响着各种地质过程。使用金刚石压砧在高温高压下原位观测流体的实验,用谱学方法,结合同步辐射光源技术,成为定量化研究地球深部高温超高压流体的有效方法。作者使用同步辐射光源的红外谱研究了10GPa下的NaCl-H2O溶液;在地球化学动力学实验室研究了3GPa,650℃下的NaCl-H2O溶液红外谱,此测量方法可以提供温度压力和体积等数据,能研究其状态。NaCl-H2O溶液红外谱表明水分子主要振动谱受压力和温度影响是不同的。压力增加促使水分子主要振动谱向低波数变化。但是温度增加的效应相反。常温高压下水被压缩,结晶向紧密堆积变化。高温高压下的水有气、液、固和超临界流体各相。水分子间的氢键在近临界态开始减弱,氢键网络被破坏。  相似文献   

13.
编后语     
“地质流体”是指存在并活跃于岩石圈中的由H_2O、CO_2、烃类以及卤素、S、N等挥发组分及其中的溶解组分一同构成的复杂流体相,它是地质作用过程中最活跃、最主要的因素之一,并在地球内部发生的一切地质作用过程、各圈层地球物理结构与力学性质、地球化学演化中扮演着极其重要的角色。地球内部流体已成为当前地学研究领域的前沿课题,并将是建立地质科学新理论体系的生长点和突破口。 由中国岩石矿物地球化学学会矿物包裹体专业委员会、南京大学内生矿床成矿机制国家开放实验室、中国科学院贵阳地球化学研究所矿床地球化学重点实验室主办,国际矿物协会包裹体专业委员会、中国石油勘探开发研究院廊坊分院天然气成藏重点实验室协办的“第13届地质流体及流体包裹体学术研讨会”于2002年10月14至17日在南京大学举行。会议共收到论文摘要71篇,来自国内各主要地球科学研究机构、高等院校地质院系、中国三大石油公司的120余位代表出席了会议。在地质流体及流体包裹体研究方面卓有建树的海外华裔学者周义明博士(美国地质调查局)、卢焕章教授(加拿大Quebec大学)  相似文献   

14.
本刊编辑部 《岩矿测试》2016,35(2):正文前I-正文前II
正117高温高压下元素配分的原位实验与计算模拟研究进展作者:黄圣轩,巫翔*,秦善导读撰文:本刊编辑部高温高压下元素配分行为研究揭示了地球内部物质迁移、富集、分异的动力学过程,有助于解决元素成矿、超临界流体性质、地球及行星演化等基础地质问题,近年来成为地球化学研究热点之一。同步辐射微聚焦X射线荧光光谱结合金刚石压腔技术原位测试方法逐渐取  相似文献   

15.
正为交流近两年来国内(外)流体包裹体研究的最新成果、研讨当前矿物包裹体及地质流体研究领域存在问题、展望未来发展趋势,中国矿物岩石地球化学学会矿物包裹体专业委员会拟于2020年12月18~21日在长春召开"第二十届全国矿物包裹体及地质流体学术研讨会"。会议由吉林大学地球科学学院、地质调查研究院/矿产资源研究院、东北亚矿产资源评价自然资源部重点实验室以及南京大学内生金属矿床成矿机制研究国家重点实验室共同承办。诚挚邀请全国同行相聚"北国春城——  相似文献   

16.
超临界地质流体对金属成矿元素具有超强的萃取和搬运能力,目前已引起地学界的极大兴趣和重视。在地壳环境中,NaCl-H2O体系是最重要的二组分流体,许多热液成矿作用和变质作用均发生在该体系中。为了研究超临界地质流体对热液成矿过程的重要作用。就必须要首先查明NaCl-H2O体系的临界参数。本文在总结前人研究结果的基础上提出了关于NaCl-H2O体系临界参数的一组计算方程。  相似文献   

17.
以原始地质资料为基础,结合电子探针数据和岩石地球化学分析,从岩石学、岩相学和地球化学的角度分析了甲玛矿区二长花岗斑岩岩浆-热液过渡的特征及成矿作用。甲玛二长花岗斑岩岩浆热液过渡以电气石-钠/钙硅酸盐化、似伟晶细晶岩壳(脉)和具"冰长石"结构特征的钾长石、蠕状石及显微晶洞(或空腔)构造为特征;地球化学上表现为Na、K的反消长和挥发分含量的涨落,并伴随着Cu、Mo、Au等成矿物质从晚期岩浆的逃逸。甲玛二长花岗斑岩的岩浆热液过渡过程可划分为以超临界流体为代表的液相不混溶阶段和超临界流体逃逸为特征的气液分馏阶段。其中前者决定了岩浆晚期的矿质分馏程度,而后者控制了含矿蒸汽和成矿热液流体的形成,进而分别形成浸染状矿化和脉状矿化。  相似文献   

18.
地质作用中的流体形成演化及成矿作用   总被引:10,自引:1,他引:10  
李兆麟  李院生 《地学前缘》1996,3(4):237-244
许多事实已证明地壳和地球深部存在大量的流体,它在所有地质过程中都扮演了重要角色。文章围绕岩浆、伟晶岩、变质作用及沉积盆地流体的形成机制、地质过程中流体作用以及流体研究中存在的问题等方面展开了讨论,提出地壳构造、岩浆作用与流体有着密切的关系。流体研究不但可以揭示地壳乃至地球深部的各种作用,系统剖析流体形成演化与成矿关系,而且对研究地幔对流、地球不同圈层流体的交换方式等均具有重要的理论和实际意义。  相似文献   

19.
变质流体作用的元素地球化学研究   总被引:3,自引:0,他引:3  
变质流体作用是变质岩-流体体系的重要地质作用过程,可以通过有效的地质地球化学方法揭示,综述了变质流体作用的地球化学研究进展,主要包括:流体包裹体,同位素和元素地球化学等方面,强调了元素地球化学研究对于示踪变质流体作用过程的重要性。  相似文献   

20.
超临界流体的地质意义   总被引:3,自引:0,他引:3  
超临界流体具有一系列特殊性质,如,临界发散性、“临界乳光”、强氧化性、可变的介电常数、较强的溶解性等。地球深部超临界流体的存在不仅影响岩石的性质,而且对地质构造演化有重要的意义,超临界流体为油气的形成提供物质和能量,同时又是热液成矿过程中元素迁移、聚集和矿石矿物赋存空间形成的重要因素,地质构造演化与超临界流体密不可分;超临界流体对地震孕育及岩浆的产生和喷发有重要影响,超临界流体技术(超临界萃取、超临界水氧化等)不但能最大限度地回收有价值的矿物,而且能有效处理“三废”。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号