首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the driving force of the Kuroshio intrusion into the South China Sea (SCS) during the winter monsoon, using satellite-tracked drifters entering the Luzon Strait (LS) through the Balintany and Babuyan Channels from the Philippine Sea. Most drifters passing through the Babuyan Channel in winter entered the interior SCS without a significant change in velocity. However, half of the drifters passing through the Balintany Channel entered the SCS at ~30 cm/s, which was faster than when they entered the LS. The other half continued moving northwestward into the Kuroshio and returned to the North Pacific. Quantitative analyses, using surface climatological wind and sea surface height anomaly (SSHa) data explained both the difference in velocity of drifters between the two channels and their acceleration through the Balintany Channel. The results suggest that the positive meridional gradient of sea surface height in the Luzon Strait, caused by the pileup of seawater driven by the Northeast monsoon, as well as Ekman flow, contribute to the Kuroshio intrusion into the SCS through the Babuyan and Balintany Channels. The former may be the main driving force.  相似文献   

2.
Analysis of seasonal variation of water masses in East China Sea   总被引:5,自引:0,他引:5  
Seasonal variations of water masses in the East China Sea (ECS) and adjacent areas are investigated, based on historical data of temperature and salinity (T-S). Dynamic and thermodynamic mechanisms that affect seasonal variations of some dominant water masses are discussed, with reference to meteorological data. In the ECS above depth 600 m, there are eight water masses in summer but only five in winter. Among these, Kuroshio Surface Water (KSW), Kuroshio Intermediate Water (KIW), ECS Surface Water (ECSSW), Continental Coastal Water (CCW), and Yellow Sea Surface Water (YSSW) exist throughout the year. Kuroshio Subsurface Water (KSSW), ECS Deep Water (ECSDW), and Yellow Sea Bottom Water (YSBW) are all seasonal water masses, occurring from May through October. The CCW, ECSSW and KSW all have significant seasonal variations, both in their horizontal and vertical extents and their T-S properties. Wind stress, the Kuroshio and its branch currents, and coastal currents are dynamic factors for seasonal variation in spatial extent of the CCW, KSW, and ECSSW, whereas sea surface heat and freshwater fluxes are thermodynamic factors for seasonal variations of T-S properties and thickness of these water masses. In addition, the CCW is affected by river runoff and ECSSW by the CCW and KSW.  相似文献   

3.
Characteristics of water exchange in the Luzon Strait during September 2006   总被引:7,自引:1,他引:6  
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of t...  相似文献   

4.
Based on the EOF analyses of Absolute Dynamic Topography satellite data,it is found that,in summer,the northern South China Sea(SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter.A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS.Numerical experiments show that the nonlinear term,the pressure torque and the planetary vorticity advection play important roles in the circulation of the northern SCS,whilst the contribution by seasonal wind stress curl is local and limited.Only a small part of the Kuroshio water intrudes into the SCS,it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait(LS) and a negative vorticity band along the 200 m isobath of the northern basin.The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS.Besides the Kuroshio intrusion and monsoon,the water transports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS,and the induced vorticity field in summer is almost contrary to that in winter.The strength variations of these three key factors(Kuroshio,monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS.As for the water exchange via the LS,the Kuroshio intrusion brings about a net inflow into the SCS,and the monsoon has a less effect,whilst the water transports via the Sunda Shelf and the Sibutu Passage are the most important influencing factors,thus,the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.  相似文献   

5.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

6.
Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009,we studied the circulation structure in the Luzon Strait area,examined the routes of water exchange between the South China Sea(SCS) and the Philippine Sea,and estimated the volume transport through Luzon Strait.We found that the Kuroshio axis follows a e-shaped path slightly east of 121uE in the upper layer.With an increase in depth,the Kuroshio axis became gradually farther from the island of Luzon.To study the water exchange between the Philippine Sea and the SCS,identification of inflows and outflows is necessary.We first identified which flows contributed to the water exchange through Luzon Strait,which differs from the approach taken in previous studies.We determined that the obvious water exchange is in the section of 121°E.The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume,and mainly in the 100±500 m layer at 19.5°±20°N(accounting for 4.40 Sv),while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°±20°N and upper 400 m at 21°±21.5°N,and below 240 m at 19°±19.5°N,accounting for 1.07,3.02 and 3.43 Sv in volume transport,respectively.  相似文献   

7.
After the winter and summer current structures on two or three latitudinal sections in Taiwan Strait were obtained from the measured current data, the seawater flux through the sections were cal -culated. In summer, the currents in the central and northern part of Taiwan Strait normally flow northward at a net flux of 3.32×l06m3 /s. In winter, the high temperature and salinity Kuroshio and South China Sea water enter Taiwan Strait from the southern section at 1.69× 106m3/s and 0.59×10 m3/s respectively, while the East China Sea water enters Taiwan Strait from the northern section at 1.02×106m3/s. About 0.40×106m3/s of the seawater enters the South China Sea along the coast of Fujian and Guangdong; the other 0.62×106m3/s of the seawater is mixed with the Kuroshio water and the South China Sea water in the northern sea area . The net northward flux is 1.74×106m3/s in winter.  相似文献   

8.
OCCAM global ocean model results were applied to calculate the monthly water transport through 7 straits around the East China Sea(ECS)and the South china Sea(SCS).Analysis of the features of velocity profiles and their variations in the Togara Strait,Luzon Strait and Eastern Taiwan Strait showed that;1)the velocity profiles had striped pattern in the Eastern Taiwan Strait,where monthly flux varied from 22.4 to 28.1 Sv and annual mean was about 25.8 Sv;2)the profiles of velocity in the Togara Strait were characterized by core structure,and monthly flux varied from 23.3 to 31.4 Sv,with annual mean of about 27.9 Sv;3)water flowed from the SCS to the ECS in the Taiwan Strait,with maximum flux of 3.1 Sv in July and minimum of 0.9 Sv in November;4)the flux in the Tsushima Strait varied by only about 0.4 Sv by season and its annual mean was about 2.3 Sv;5)Kuroshio water flowed into the SCS in the Luzon Strait throughout the year and the velocity profiles were characterized by multi-core structure.The flux in the Luzon Strait was minimun in June(about 2.4 Sv)and maximum in February(about 9.0 Sv),and its annual mean was 4.8 Sv;6)the monthly flux in the Mindoro Strait was maximum in December(3.0 Sv)and minimum in June(Only 0.1 Sv),and its annual mean was 1.3 Sv;7)Karimata Strait water flowed into the SCS from May to August,with maximum in-flow flux of about 0.75 Sv in June and flowed out from September to April at maximum outflow flux of 3.9 Sv in January.The annual mean flux was about 1.35 Sv.  相似文献   

9.
A numerical study on seasonal variations of the Taiwan Warm Current   总被引:3,自引:0,他引:3  
Princeton Ocean Model (POM) is employed to investigate the Taiwan Warm Current (TWC) and its seasonal variations. Results show that the TWC exhibits pronounced seasonal variations in its sources, strength and flow patterns. In summer, the TWC flows northeast in straight way and reaches around 32°N; it comes mainly from the Taiwan Strait, while its lower part is from the shelf-intrusion of the Kuroshio subsurface water (KSSW). In winter, coming mainly from the shelf-intrusion of the Kuroshio northeast of Taiwan, the TWC flows northward in a winding way and reaches up around 30°N. The Kuroshio intrusion also has distinct seasonal patterns. The shelf-intrusion of KSSW by upwelling is almost the same in four seasons with a little difference in strength; it is a persistent source of the TWC. However, Kuroshio surface water (KSW) can not intrude onto the shelf in summer, while in winter the intrusion of KSW always occurs. Additional experiments were conducted to examine effects of winds and transport through  相似文献   

10.
The deep and bottom water within the Huanghai Cold Water Mass (HCWM) in summer was, for a long time, considered as a homogeneous body of water. Various investigations in recent years showed this may not be true.After a detailed analysis of the most recently obtained refined CTD data and other historical hydrographic data at our disposal, some significant results have been obtained.1.It is definitely shown that the Huanghai Warm Current (HWC) did not enter the HCWM in summer. However, there exist two types of second class water masses within the HCWM in summer. They are: (1) a water mass with low temperature and low salinity, which was formed in the preceding winter by a vertical mixing process locally, and (2) a water mass of relatively high temperature and high salinity, which is the remanent body of the HWC that entered the HCWM in preceding seasons, but was completely cut off from its source in summer. The spreading of these two water masses, the existence of a frontal zone at the boundary of the two  相似文献   

11.
1 INTRODUCTIONThe South China Sea (SCS) is a semi-enclosedmarginal sea in western North Pacific Ocean withvery complex topography and is the important pas-sage connecting the Pacific and Indian Oceans. Ithas great impact to the global climate and a greatinterest of many oceanography researchers. Twodominant surface hydrographic and circulation fea-tures in the northern SCS are a strong fresh waterexpansion and a warm and high-salinity seawaterintrusion such as the SCS Diluted Water…  相似文献   

12.
Coral bleaching, caused by elevated sea surface temperature(SST), is occurring more frequently and seriously worldwide. Due to the lack of field observations, we understand little about the large-scale variability of thermal stress in the South China Sea(SCS) and its effect on China’s coral reefs. This paper used 4-km high resolution gap-filled SST(Filled SST) data and thermal stress data related to coral bleaching derived from Coral Reef Temperature Anomaly Database(Co RTAD) to quantify the spatial and temporal characteristics of chronic thermal stress and acute thermal stress to China’s coral reefs in SCS from 1982 to 2009. We analyzed the trend of SST in summer and the thermal stress frequency, intensity and duration during this period. The results indicate that, as a chronic thermal stress, summer mean SST in SCS shows an average upward trend of 0.2℃/decade and the spatial pattern is heterogeneous. Waters of Xisha Islands and Dongsha Islands of the northern SCS are warming faster through time compared to Zhongsha Islands and Nansha Islands sea areas of the southern SCS. High frequency bleaching related thermal stress events for these reefs are seen in the area to the northwest of Luzon Island. Severe anomaly thermal stress events are more likely to occur during the subsequent year of the El Nino year for these coral reefs. Besides, the duration of thermal stress varies considerably by anomaly year and by region.  相似文献   

13.
To investigate whether the Asian monsoon influences tropical cyclone (TC) activity over the South China Sea (SCS), TCs (including tropical storms and typhoons) over the SCS are analyzed using the Joint Typhoon Warning Center dataset from 1945 to 2009. Results show an increasing trend in the frequencies of TC-all (all TCs over the SCS) and TY-all (all typhoons over the SCS), due mainly to an increase in the number of TCs moving into the SCS after development elsewhere. Little change is seen in the number of TCs that form in the SCS. The results of wavelet analysis indicate that the frequency of typhoons (TY) shows a similar oscillation as that of TCs, i.e., a dominant periodicity of 8-16 years around the 1970s for all TC activity, except for TC-mov (TCs that moved into the SCS from the western North Pacific). To examine the relationship between typhoon activity and the summer monsoon, a correlation analysis was performed that considered typhoons, TCs, and five monsoon indexes. The analysis reveals statistically significant negative correlation between the strength of the Southwest Asian summer monsoon and typhoon activity over the SCS, which likely reflects the effect of the monsoon on TC formation in the western North Pacific (WNP) and subsequent movement into the SCS. There is a statistically significant negative correlation between TY-loc (typhoons that developed from TCs formed over the SCS) and the South China Sea summer monsoon and Southeast Asian summer monsoon.  相似文献   

14.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

15.
Based on the field data obtained during cruises on the shelf of the East China Sea from 1997 to 1999, seasonal variations of coastal upwelling on the inner shelf are discussed by using cross-shelf transect profiles and horizontal distributions of chemical and hydrographic variables. Results show that the coastal upwelling was year-round, but the areas and intensities of the upwelling were quite different in season. The coastal upwelling occurred in all of the coastal areas of the region in spring and summer, but in autumn only in the area off Zhejiang Province, and in winter in the area off Fujian Prov- ince. It was the strongest in summer and the weakest in winter. Geographically, it was the strongest in the area off Zhejiang Province and the weakest in the southmost or northmost parts of the East China Sea. The estimated nutrient fluxes upward into euphotic zone through coastal upwelling were quite large, es- pecially for phosphate, which contributed significantly to primary production and improved the nutrient structure of the coastal ecosystem in the East China Sea.  相似文献   

16.
Relationship between the onset date of South China Sea (SCS) summer monsoon and the summer rainfall in Shandong Province was examined by comprehensive analysis to establish a conceptual model of the link. If the summer monsoon occurs earlier, the 500 hPa level would induce the teleconnection of Eurasian pattern in the summer (June-August), which indicates that the western Pacific subtropical high is displaced northward further than usual, the Siberian high is intensified and the Okhotsk low is deepened. Under such circumstance, Shandong, located in the west side of the subtropical high and in front of the mid-Siberia high, would be expected to have a wet summer because it is quite possible for cold and warm air to meet and interact with each other in Shandong. Statistical analysis revealed that the 500 hPa anomalies over Korea and Japan were sensitive to the SCS monsoon onset date and very important to precipitation in Shandong, and that the convective activities over the deep water basin in the SCS in 24-26 pentads significantly influenced the position of the ridge line of the western Pacific subtropical high. These findings yielded better understanding of the causative mechanisms involved in the precipitation generation, so that the knowledge gained can possibly be applied for long-lead forecast.  相似文献   

17.
18.
With the use of historical data from their 1982-1985 special observation at the source area of the Taiwan Warm Current the authors conducted studies to clarify the temperature and salinity characteristics, variability, and origin of the Taiwan warm Current Water, and its influence on the expanding direction of the Changjiang Diluted Water.The main results are given below.(1)The Taiwan Warm Current Water can be divided into the "Surface Water of the Taiwan Warm Current" formed due to the mixing of the Kuroshio Surface Water flowing northward along the east coast of Taiwan with the Taiwan Strait Water, and the "Deep Water of the Taiwan Warm Current" originated from Kuroshio Subsurface Water to the east of Taiwan. It is characterized by stable low temperature and stable high salinity in summer. The maximum seasonal variation and maximum secular variation of temperature and salinity are 1.87℃, 0.26‰ and 2.96℃, 0.37‰, respectively.(2)The variation in strength of the Taiwan Warm Current is the main influe  相似文献   

19.
CTD data on standard levels coolected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity.The thermocline undergoes remarkable seasonal variation in the South China Sea (SCS),and especially in the region of the north shelf where the thermocline disappears in december.The thermocline is stronger and thicker in July than in December,There is no obvious seasonal variation in the halocline.Due to the upper Ekman transport caused by monsoon over the SCS,the thermocline slopes upward in July and downward in december from east to west in the northern SCS.The characteristics of the thermocline and halocline are influenced by local eddies in the SCS.The Zhujiang diluted flow influences significantly the SCS shelf‘s halocline.  相似文献   

20.
A P-vector method was optimized using variational data assimilation technique, with which the vertical structures and seasonal variations of zonal velocities and transports were investigated. The results showed that westward and eastward flowes occur in the Luzon Strait in the same period in a year. How ever thenet volume transport is westward. In the upper level (0m -- -500m), the westward flow exits in the middle and south of the Luzon Strait, and the eastward flow exits in the north. There are two centers of westward flow and one center of eastward flow. In the middle of the Luzon Strait, westward and eastward flowes appear alternately in vertical direction. The westward flow strengthens in winter and weakens in summer. The net volume transport is strong in winter (5.53 Sv) but weak in summer (0.29 Sv). Except in summer, the volume transport in the upper level accounts for more than half of the total volume transport (0m -- bottom). In summer, the net volum etransport in the upper level is eastward (1.01 Sv), but westward underneath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号