共查询到20条相似文献,搜索用时 15 毫秒
1.
地幔平衡部分熔融过程中,微量元素在原始岩浆中(熔体)和初始固相母体物质中(地幔)遵循以下关系:C^iL/C^oL=1/[D F(1-D)];分离结晶成因的岩浆岩系,微量元素在残余岩浆中(C^iL)和母岩浆中(C^oL)遵循如下关系式:C^iL=C^iL*F^D-1。微量元素在部分熔融和分离结晶成岩方式中有独立的分布规律,因此利用微量元素对或比值的图解就可判别岩体(或脉岩)的成岩方式。选取微量元素Th-Yb、La-La/Yb、Th-Cr和Th-Ni图解对闽西基性脉岩成岩方式进行判别,发现闽西三个地区的基性脉岩均为地幔部分熔融作用所致,从而印证了闽西基性脉岩不是酸性岩浆演化的产物。 相似文献
2.
The Braccia gabbro complex (Eastern Central Alps, Northern Italy)intruded the boundary between the Adriatic lowermost continentalcrust and the subcontinental upper mantle in Permian times.The gabbro complex consists mainly of gabbronorites withminor dykes of quartz diorite and FeTiP-rich diorite.The gabbronorites contain abundant cumulus clino- andorthopyroxene and only small amounts of olivine, indicatingcrystallization at high pressure ( 相似文献
3.
正Geochemistry is a powerful tool to help characterize the tectonic setting of igneous rocks associations.However,when continental mafic dykes and flood basalts are the target most of the proposed geochemical discrimination diagrams fail to correctly classify them,i.e.many mafic 相似文献
4.
Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies 总被引:14,自引:3,他引:14
MURPHY M. D.; SPARKS R. S. J.; BARCLAY J.; CARROLL M. R.; BREWER T. S. 《Journal of Petrology》2000,41(1):21-42
The 19951999 eruption of the Soufriere Hills volcano,Montserrat, has produced a crystal-rich andesite containingquench-textured mafic inclusions, which show evidence of havingbeen molten when incorporated into the host magma. Individualcrystals in the andesite record diverse histories. Amphibolephenocrysts vary from pristine and unaltered to strongly oxidizedand pseudomorphed by anhydrous reaction products. Plagioclasephenocrysts are commonly reverse zoned, often with dusty sievetextures. Reverse zoned rims are also common on orthopyroxenephenocrysts. Pyroxene geothermometry gives an average temperatureof 858 ± 20°C for orthopyroxene phenocryst cores,whereas reverse zoned rims record temperatures from about 880to 1050°C. The heterogeneity in mineral rim compositions,zoning patterns and textures is interpreted as reflecting non-uniformreheating and remobilization of the resident magma body by intrusionof hotter mafic magma. Convective remobilization results inmixing together of phenocrysts that have experienced differentthermal histories, depending on proximity to the intruding maficmagma. The low temperature and high crystallinity are interpretedas reflecting the presence of a cool, highly crystalline magmabody beneath the Soufriere Hills volcano. The petrological observations,in combination with data on seismicity, extrusion rate and SO2fluxes, indicate that the current eruption was triggered byrecent influx of hot mafic magma. KEY WORDS: Montserrat; eruption; magma mixing; mafic inclusion; sieve texture 相似文献
5.
Mafic Magma Intraplating: Anatexis and Hybridization in Arc Crust, Bindal Batholith, Norway 总被引:4,自引:0,他引:4
BARNES CALVIN G.; YOSHINOBU AARON S.; PRESTVIK TORE; NORDGULEN OYSTEIN; KARLSSON HARALDUR R.; SUNDVOLL BJORN 《Journal of Petrology》2002,43(12):2171-2190
The dioritic Velfjord plutons ( 相似文献
6.
西准噶尔地区晚古生代岩浆活动强烈, 在达尔布特构造带形成带状展布的花岗岩带。近年来, 对该区域大岩基研究较多, 而对区域内小岩体的研究较为局限, 主要集中在包古图一带成矿斑岩上。都伦河东岩体位于西准噶尔扎依尔山阔依塔斯地区, 其寄主岩石主要为一套中粒石英闪长岩、中粗粒花岗闪长岩、中粗粒黑云母花岗闪长岩组合。于其中新发现丰富的镁铁质微粒包体, 通过对暗色包体的野外展布特征、岩石学等特征研究, 确定其为岩浆混合成因, 是高温的幔源基性岩浆和温度相对较低的壳源酸性岩浆混合作用的产物, 这一认识为探讨都伦河东岩体的成因及壳-幔岩浆的混合作用提供了重要的佐证, 对于西准噶尔地区花岗岩类的成因类型和多样性的研究也具有区域性意义。 相似文献
7.
The initial Nd and Sr isotopic ratios of cumulate rocks andminerals of the Kiglapait intrusion are pertinent as indicatorsof the processes that affected the Kiglapair magma while itwas resident in the crust. A SmNd mineral isochron indicatesthat the crystallization age of the intrusion is 1305?22 millionyears. The initial Nd values range from1?6 in the LowerZone to 6 in the Upper Zone and correlate with the anorthitecontent of plagioclase. The initial 87Sr/86Sr ratios are 0.70407to 0.70433 in the Lower Zone, and increase monotonically up-section(decreasing plagioclase anorthite content) to 0.7068 in theUpper Zone. These variations are attributed to assimilationof roof rock concurrently with crystallization. It is evidentthat replenishment of the chamber with uncontaminated magmawas important during the accumulation of the lower zone rocks,but did not occurduring crystallization of the Upper Zone. Amathematical model relating isotope ratio shifts to the relativerates of crystallization, assimilation, and replenishment ispresented. It is estimated that the rate of assimilation wasbetween 0.01 and 0.04 of the crystallization rate, and thatduring the accumulation of the Lower Zone, the rate of replenishmentwas about half of the crystallization rate. A formulation forassimilation efficiencyis presented that relatedthe actual amount of assimilation (determined from the isotopedata) to the thermodynamic maximum allowable amount. The assimilationefficiency of the Kiglapait intrusion is not tightly constrained,but appears to be of the order of 0.01 near the end of crystallizationand perhaps as high as 0.07 near the beginning. Further quantitativeestimates of assimilation efficiency in different intrusionsemplaced under different conditions may aid in understandingassimilation mechanisms and in assessing the role of assimilationin magmatic evolution in general. Many layered intrusions studiedto date have initial Nd isotope ratios close to the chondriticvalue (Nd= 0), suggestive of mantle magma sources that are chemicallyundepleted, and thus different from the sources of mid-oceanridge basalt and island-arec basalt. 相似文献
8.
9.
Mafic and Felsic Magma Interaction in Granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif) 总被引:12,自引:0,他引:12
The Hercynian, post-collisional Karkonosze pluton contains severallithologies: equigranular and porphyritic granites, hybrid quartzdiorites and granodiorites, microgranular magmatic enclaves,and composite and lamprophyre dykes. Field relationships, mineralogyand major- and trace-element geochemistry show that: (1) theequigranular granite is differentiated and evolved by smalldegrees of fractional crystallization and that it is free ofcontamination by mafic magma; (2) all other components are affectedby mixing. The end-members of the mixing process were a porphyriticgranite and a mafic lamprophyre. The degree of mixing variedwidely depending on both place and time. All of the processesinvolved are assessed quantitatively with the following conclusions.Most of the pluton was affected by mixing, implying that hugevolumes (>75 km3) of mafic magma were available. This maficmagma probably supplied the additional heat necessary to initiatecrustal melting; part of this heat could have also been releasedas latent heat of crystallization. Only a very small part ofthe Karkonosze granite escaped interaction with mafic magma,specifically the equigranular granite and a subordinate partof the porphyritic granite. Minerals from these facies are compositionallyhomogeneous and/or normally zoned, which, together with geochemicalmodelling, indicates that they evolved by small degrees of fractionalcrystallization (<20%). Accessory minerals played an importantrole during magmatic differentiation and, thus, the fractionalcrystallization history is better recorded by trace rather thanby major elements. The interactions between mafic and felsicmagmas reflect their viscosity contrast. With increasing viscositycontrast, the magmatic relationships change from homogeneous,hybrid quartz diorites–granodiorites, to rounded magmaticenclaves, to composite dykes and finally to dykes with chilledmargins. These relationships indicate that injection of maficmagma into the granite took place over the whole crystallizationhistory. Consequently, a long-lived mafic source coexisted togetherwith the granite magma. Mafic magmas were derived either directlyfrom the mantle or via one or more crustal storage reservoirs.Compatible element abundances (e.g. Ni) show that the maficmagmas that interacted with the granite were progressively poorerin Ni in the order hybrid quartz diorites—granodiorites—enclaves—compositedykes. This indicates that the felsic and mafic magmas evolvedindependently, which, in the case of the Karkonosze granite,favours a deep-seated magma chamber rather than a continuousflux from mantle. Two magma sources (mantle and crust) coexisted,and melted almost contemporaneously; the two reservoirs evolvedindependently by fractional crystallization. However, maficmagma was continuously being intruded into the crystallizinggranite, with more or less complete mixing. Several lines ofevidence (e.g. magmatic flux structures, incorporation of granitefeldspars into mafic magma, feldspar zoning with fluctuatingtrace element patterns reflecting rapid changes in magma composition)indicate that, during its emplacement and crystallization, thegranite body was affected by strong internal movements. Thesewould favour more complete and efficient mixing. The systematicspatial–temporal association of lamprophyres with crustalmagmas is interpreted as indicating that their mantle sourceis a fertile peridotite, possibly enriched (metasomatized) byearlier subduction processes. KEY WORDS: Bohemian Massif; fractional crystallization; geochemical modelling; hybridization; Karkonosze 相似文献
10.
Generation of Porphyritic and Equigranular Mafic Enclaves During Magma Recharge Events at Unzen Volcano, Japan 总被引:5,自引:0,他引:5
BROWNE BRANDON L.; EICHELBERGER JOHN C.; PATINO LINA C.; VOGEL THOMAS A.; DEHN JONATHAN; UTO KOZO; HOSHIZUMI HIDEO 《Journal of Petrology》2006,47(2):301-328
Mafic to intermediate enclaves are evenly distributed throughoutthe dacitic 19911995 lava sequence of Unzen volcano,Japan, representing hundreds of mafic recharge events over thelife of the volcano. This study documents the morphological,textural, chemical, and petrological characteristics of theenclaves and coexisting silicic host lavas. The eruptive productsdescribed in this study appear to be general products of magmamingling, as the same textural types are seen at many othervolcanoes. Two types of magmatic enclaves, referred to as Porphyriticand Equigranular, are easily distinguished texturally. Porphyriticenclaves display a wide range in composition from basalt toandesite, are glass-rich, spherical and porphyritic, and containlarge, resorbed, plagioclase phenocrysts in a matrix of acicularcrystals and glass. Equigranular enclaves are andesitic, non-porphyritic,and consist of tabular, medium-grained microphenocrysts in amatrix glass that is in equilibrium with the host dacite magma.Porphyritic enclaves are produced when intruding basaltic magmaengulfs melt and phenocrysts of resident silicic magma at theirmutual interface. Equigranular enclaves are a product of a moreprolonged mixing and gradual crystallization at a slower coolingrate within the interior of the mafic intrusion. KEY WORDS: mafic enclaves; quenched mafic inclusions; magma mingling; Unzen volcano; Unzen Scientific Drilling Project; resorbed plagioclase 相似文献
11.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma 相似文献
12.
Partial Melting and Assimilation of Dolomitic Xenoliths by Mafic Magma: the Ioko-Dovyren Intrusion (North Baikal Region, Russia) 总被引:5,自引:0,他引:5
WENZEL THOMAS; BAUMGARTNER LUKAS P.; BRUGMANN GERHARD E.; KONNIKOV EDUARD G.; KISLOV EVGENIY V. 《Journal of Petrology》2002,43(11):2049-2074
A petrological study was carried out on Mg-skarn-bearing dunitecumulates that are part of the Neo-Proterozoic Ioko-Dovyrenintrusion (North Baikal region, Russia). Skarn xenoliths containbrucite pseudomorphs after periclase, forsterite and Cr-poorspinel. Fine-grained forsteritespinel skarns occur withthe brucite skarns or as isolated schlieren. Field relationshipsreveal that the Mg-skarns formed from silica-poor dolomiticxenoliths by interaction with the mafic magma of the Ioko-Dovyrenintrusion. Rapid heating of dolomitic xenoliths by the maficmagma caused the decomposition of dolomite into calcite + periclase,releasing much CO2. Further heating quantitatively melted thecalcite. A periclase-rich restite was left behind after extractionof the low-density, low-viscosity calcite melt. The extractedcalcite melt mixed with the surrounding mafic melt. This resultedin crystallization of olivine with CaO contents up to 1·67wt %. A local decrease in the silica concentration stabilizedCaAl2SiO6-rich clinopyroxene. Brucite/periclase-free forsteritespinelskarns probably originated by crystallization from the maficmelt close to the xenoliths at elevated fO2. The high fO2 wascaused by CO2-rich fluids released during the decompositionof the xenoliths. The above case study provides the first evidencefor partial melting of dolomite xenoliths during incorporationby a mafic magma. KEY WORDS: dunite; dolomite assimilation; partial melting 相似文献
13.
14.
New Rb-Sr and trace element data are reported for the GreatDyke and Bushveld Mafic Phase layered intrusions. It is arguedthat geochemical characteristics, such as 87Sr/86Sr ratios andR.E.E. distribution patterns have been little modified by crustalcontamination. Rb-Sr data for whole-rocks of the Great Dyke yield an age of2514±16 m.y. and an initial 87Sr/86Sr ratio of 0.70261±4.Mineral data are consistent with these results. The low errorson the results indicate no significant variation of 87Sr/86Srratios of successive magmatic influxes emplaced in differentmagma chambers. Earlier Great Dyke magmas were highly Mg-richand represent extensive partial melts of the source material.One such influx is shown to have a high Rb/Sr ratio (0.25) anda fractionated R.E.E. pattern (CeN/YBN 12). These ratios areconsidered to approximate those of the source region. The Bushveld Mafic Phase has been dated accurately for the firsttime and has a Rb-Sr age of 2095±24 m.y. Initial 87Sr/86Srratios increase in a stepwise manner upwards in the intrusionfrom 0.70563±2 to 0.70769±6. Each increase isabrupt and occurs at a horizon also characterized by a suddenirregularity in cryptic variation. The Mafic Phase was emplacedas a succession of magmatic influxes each of which had higher87Sr/86Sr ratio than its predecessor. The first magma was both Mg-rich (MgO 21.5 per cent) and SiO2-rich(5055 per cent SiO2) and was derived by extensive partialmelting of a shallow level upper mantle source. This sourcewas characterized by trace element abundance ratios (e.g. Rb/Sr 0.25; K/Rb 90; CeN/YbN 11), similar to those of kimberlitesand some potassic lavas and comparable with those deduced forthe Great Dyke source region. It is postulated that when the Rhodesian and Kaapvaal cratonsstabilized, underlying refractory mantle became fixed theretoto form a proto-lithosphere. Shortly afterwards, at about 2800m.y. ago, this proto-lithospheric mantle was enriched by passagethrough it of fluids with kimberlitic trace element chemistry.This sub-cratonic mantle thereafter evolved with a relativelyhigh Rb/Sr ratio. Magmas derived from it have anomalous chemicalcharacteristics with respect to those of ocean-floor basalts,reflecting major differences in the evolution of their respectivesource regions. 相似文献
15.
16.
席状岩浆房中的岩浆冷却及动力稳定性 总被引:4,自引:0,他引:4
关于岩浆房中岩浆的结晶分异方式一直存在着争议,其基本矛盾在于对岩浆冷却历史及热不稳定性可能引起的对流形式的理解各不相同。本文在充分考虑席状岩浆房的基本物理特征的基础上,建立了稳定岩浆体系的动态冷却模型,并以攀枝花层状岩体为例,计算了相应的温度场、密度场及粘度场。同时,提出了一种基于能量守恒的、对热不稳定性进行分析的新方法。计算了热不稳定性可能引起的对流强度、对流区域及对流时间,并深入讨论了在一定的热不稳定状态下,不同的岩浆屈服强度对对流特征参量的影响。结果表明,在该岩体的整个固化过程中,如果曾发生过自发对流,其对流也是极微弱而短暂的,不会影响中下部岩浆房中岩浆的固化和结晶。这一结论与对该岩体的实际观察相符。 相似文献
17.
Fountains in Magma Chambers 总被引:5,自引:3,他引:5
Cyclic layering is a common feature of the ultramafic zone oflayered intrusions and is usually attributed to the entry ofnew pulses of dense magma into the chamber. Since the crystallizationof olivine and bronzite lowers the density of the magma, a newpulse of the parent magma will be denser than the fractionatedmagma in the chamber. If the new pulse enters with excess momentumit will initially rise up into the host magma to form a fountain,then fall back around the feeder when negative buoyancy forcesovercome the initial momentum of the pulse. Laboratory experimentsusing aqueous solutions with both point and line sources havebeen conducted to obtain a quantitative understanding of thefluid-dynamical processes that are important in fountains. Itis observed that convection within the fountain is highly turbulent,resulting in appreciable entrainment of the host magma. A gravity-stratifiedhybrid layer develops at the floor and this breaks up into aseries of double-diffusive convecting layers if the new pulseis hotter than the host magma. The number of layers that formdepends on a number of factors, especially R, the ratio of thecontributions of composition and heat to the total density differencebetween the host magma and the new pulse. Raising the valueof R, results in the formation of more, thinner layers. The thickness of the hybrid layer at any time t is given byH = h0+(V0/A)t where V0 is the volume flux through the feederand A is the horizontal area of the chamber. h0 is related tothe initial steady-state height of the fountain and, for a linesource, is given by h0=CU04/3 d1(g/)2/3 whereU0 is the volume flux per unit length, g is the accelerationdue to gravity, d is the width of the feeder, is the densityof the host magma, is the density difference between the magmasand C is a constant. Calculations based on these results and the consideration ofthe flow in the feeder dykes below the chamber indicate thata fountain will rise at least 350 m in a continental magma chamberif the feeder width is greater than 10 m. This will lead toextensive mixing between the new pulse and the fractionatedmagma in the chamber, producing a zoned hybrid layer at thefloor that is commonly over 1000 m thick. If the chamber receivesmany pulses of dense magma, the resulting zoning may persistthroughout much of the life of the chamber, especially if thefirst pulse to enter becomes contaminated by light magma releasedby melting at the margins. The highest Mg/Fe ratio for olivineand pyroxenes from cyclic units from the ultramafic zones oflayered intrusions is often well below the value expected forminerals crystallizing from a melt derived directly from themantle, supporting the hypothesis that new pulses of dense magmacan mix extensively with the fractionated magma in the chamber. The feeder dykes to some oceanic magma chambers, such as theBay of Islands Ophiolite, are believed to be narrower, so thatfountains do not rise more than a few metres above the floorof the chamber. This restricts mixing between the input magmaand the host magma and can result in the formation of a hybridzone that is only a few metres thick. 相似文献
18.
19.
20.
Ulf S?DERLUND 《《地质学报》英文版》2016,90(Z1):83-83
正Baddeleyite(ZrO_2)is today recognized as a key mineral for dating the emplacement of mantle-derived rocks such as gabbros,alkaline(Si-poor)rocks and dolerite dykes and sills,but also in hydrothermally-driven deposits(Heaman 相似文献