首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Seismicity located by using the most recent data obtained from the high-gain seismograph network of Tohoku University shows that the deep seismic zone beneath northeastern Honshu, Japan, is composed of two thin planes which are parallel to each other and are 30–40 km apart. Focal mechanisms derived from the earthquakes in the upper plane are reverse-faulting, or, some of them, down-dip compression. As a contrast, those in the lower plane are down-dip extension. The location of the upper boundary of the descending lithospheric slab, inferred from the arrival-time difference between ScS and ScSp waves and from the travel-time anomaly of intermediate-depth earthquakes observed at the small-scale seismic array, coincides exactly with the upper plane of the double-planed deep seismic zone. Anelasticity (1/Q) structure of the upper mantle consists of three distinct zones: a high-Q (Qs− 1500) inclined lithospheric slab, an intennediate-Q (Qs−350) land-side mantle between the Pacific coast and the volcanic front, and a low-Q (Qs − 100) land-side mantle between the volcanic front and the coast of the Japan Sea.The evidence obtained here provides valuable information as to the definition of the type of mechanism producing the plate motion beneath island arcs.  相似文献   

2.
A double-planed structure of deep seismic zone has been found over a wide area more then 300 km × 200 km in the Tohoku District, the northeastern part of Honshu, Japan. This prominent feature of the configuration of the deep seismic zone has been ascertained through a precise determination of the microearthquake hypocenters by using the data from the seismic network of Tohoku University. The two planes are nearly parallel to each other, the distance between the two planes being from 30 to 40 km.Composite focal mechanism solutions are derived from the superposition of the distribution of first motions of P waves, and the different fault types are obtained for the two groups of earthquakes; the earthquakes which occurred in the upper plane are characterized by reverse faulting, some of them by down-dip compressional stresses, and those in the lower plane by down-dip extensional stresses. The evidence obtained here provides valuable information for the definition of the type of mechanism producing the plate motion beneath the island arc.  相似文献   

3.
The vertical section of microearthquakes, determined accurately by using the Hokkaido University network, shows two dipping zones (the double seismic zone) 25–30 km apart in the depth range of 80–150 km beneath the middle of Hokkaido in the southwestern side of the Kurile arc. Hypocentral distribution of large earthquakes (mb > 4) based on the ISC (International Seismological Centre) bulletin also shows the double seismic zone beneath the same region. The hypocentral distribution indicates that the frequency of events occurring in the lower zone is four times greater than that in the upper zone. The difference in seismic activity between the two zones beneath Hokkaido is in contrast with the region beneath northeastern Honshu in the northeastern Japan arc.Composite focal mechanisms of microearthquakes and individual mechanisms of large events mainly characterize the down-dip extension for the lower zone as is observed beneath northeastern Honshu. For the upper zone, however, the stress field is rather complex and not necessarily similar to that beneath northeastern Honshu. This may be considered to indicate the influence of slab contortion or transformation in the Hokkaido corner between the Kurile and the northeastern Japan arcs.  相似文献   

4.
5.
Knowledge of the crustal structure, especially the geometry of seismogenic faults, is key to understanding active tectonic processes and assessing the size and frequency of future earthquakes. To reveal the relationship between crustal structure and earthquake activity in northern Honshu Island, common midpoint (CMP) deep reflection profiling and earthquake observations by densely deployed seismic stations were carried out across the active reverse faults that bound the Ou Backbone range. The 40-km-long CMP profiles portray a relatively simple fault geometry within the seismogenic layer. The reverse faults merge at a midcrustal detachment just below the base of the seismogenic layer, producing a pop-up structure that forms the Ou Backbone range. The top of the reflective middle to lower crust (4.5 s in travel time (TWT)) nearly coincides with the bottom of seismogenic layer. The P-wave velocity structure and surface geology suggest that the bounding faults are Miocene normal faults that have been reactivated as reverse faults.  相似文献   

6.
Poisson's ratios of the upper and lower crust and the sub-Moho mantle beneath central Honshu, Japan, are investigated using three independent methods that are based on S to P ratios of apparent velocities, the Wadati diagrams and an inversion of P and S arrivals. Shallow earthquakes at distances of 200—500 km from the Nagoya University Telemeter Network are used for the apparent velocity ratio method. Crustal and subcrustal earth-quakes under the network are used for the other two methods. The network consists of wide-band seismometers with three components which are particularly suitable for detecting S waves. The three different methods give a consistent result for Poisson's ratio σ, that is, (1) σ = 0.23 ± 0.01 in the upper crust, (2) σ = 0.26−0.28 in both the lower crust and in the sub-Moho mantle. The result indicates a sharp contrast in σ between the upper and the lower crust rather than at the Moho. The low σ in the upper crust can only be explained by the presence of a substantial amount of free quartz, indicating granitic rocks. A higher σ in the lower crust suggests that this portion is presumably less saturated in silica and may be even undersaturated, pointing to intermediate to mafic rocks. The sub-Moho σ is almost equal to the σ averaged over the entire upper mantle that has been estimated from the Wadati diagrams of deep shocks beneath Japan but is higher than those calculated from Pn and Sn velocities in oceanic and stable continental regions.  相似文献   

7.
《Applied Geochemistry》2006,21(3):492-514
Geochemical mapping of northern Honshu in the Northeast Japan Arc was carried out using stream sediments at a sampling density of one sample per 130 km2. More than 50 elements were determined in 395 stream sediment samples (<0.18 mm fraction). In geochemical maps, areas with especially low concentrations of large ion lithophile elements (LILE), Be and Li widely overlap with the distribution of Quaternary volcanic rocks along the volcanic front. The areas rich in mafic elements are associated with mafic rocks in many cases. On a regional scale, Ni, Cr and Cu contents are higher in the eastern Paleozoic–Mesozoic basement zone, Pb and Tl tend to be higher on the western zones, and Zn and Cd are high in the western back-arc zone. The areas especially rich in Cu, Zn, Cd, Pb, Bi and Tl coincide with the distribution of large mineral deposits. High concentrations related to Kuroko, hydrothermal-vein, and skarn-type deposits are recognized. High values of As and Sb are related to active geothermal areas near volcanoes and ore deposits. Chemical variations of K, Ce, Th and Sn in the stream sediments are concordant with chemical variations in major rocks. The median and mean concentrations for the stream sediments in northern Honshu, showing arc signatures, are lower in Rb, Cs, Th, Li, K, Be, Ta, LREE, Ni, Hg and Sn, and higher in Sc, Ca and Cd relative to the whole area of Japan, largely because of the contribution of Cenozoic island-arc volcanic rocks that are generally poor in incompatible elements. The averaged chemical compositions of the stream sediments for the geologic zones show systematic variations of many elements. The contrasting variations of LREE and Th contents, which are lower in the zones of Cenozoic rocks relative to the zones of pre-Neogene basements, reflect the regional variations in the main rocks, and also reflect the change of geological settings of the studied area from the continental margin to an island arc during the Cenozoic.  相似文献   

8.
In 1995–1998 and 2003–2005, detailed deep seismic soundings were undertaken in the Barents-Kara Region along geotraverses 1-AR, 2-AR, 3-AR with a total length of over 3000 km. Seismic cross-sections, up to 50 km deep as an average, were obtained using the software package GODOGRAPH designed at the Department of Seismometry and Geoacoustics of the Lomonosov Moscow State University. The study was based on refraction traveltime curves with approximately 100 curves per profile. The sections obtained along the 1-AR and 2-AR traverses were geologically interpreted. The main crustal boundaries, fold-thrust structural features of the lower crust and a suture zone between the North Barents Basin and the Caledonian Orogenic Belt were distinguished. Based on our data, the structure of the suture can be interpreted as an ancient subduction zone. The possible pattern of tectonic movements of the Barents Plate is characterized.  相似文献   

9.
本文以广西南盘江-桂中坳陷为例介绍了喀斯特地貌区的深地震反射采集方法技术,来揭示地表喀斯特地貌发育的广西南盘江-桂中坳陷下深部结构.为了获得高信噪比的深地震反射资料,针对该区地表及深部复杂性情况,采取以下六个技术措施:高精度多方法联合测量技术,干扰波特性分析及压制,面向目标的观测系统设计,加强炮检点的选点工作,加大试验力度选取适合的激发和接收参数,多种针对性静校正处理方法.其中,干扰波特性分析及压制方法和技术实施是获取喀斯特地区深部结构的技术难点,也是前提和保证;多种针对性静校正处理方法是后期室内处理改善深部结构资料品质的关键.通过采取以上技术措施将大大提高了资料信噪比,改善了资料的品质,获得了广西南盘江-桂中坳陷下的较为清晰的深部结构特征.这为此类地区的地震探测提供了采集实例和探测方法依据.  相似文献   

10.
It is being accepted that earthquakes in subducting slab are caused by dehydration reactions of hydrous minerals. In the context of this “dehydration embrittlement” hypothesis, we propose a new model to explain key features of subduction zone magmatism on the basis of hydrous phase relations in peridotite and basaltic systems determined by thermodynamic calculations and seismic structures of Northeast Japan arc revealed by latest seismic studies. The model predicts that partial melting of basaltic crust in the subducting slab is an inevitable consequence of subduction of hydrated oceanic lithosphere. Aqueous fluids released from the subducting slab also cause partial melting widely in mantle wedge from just above the subducting slab to just below overlying crust at volcanic front. Hydrous minerals in the mantle wedge are stable only in shallow (< 120 km) areas, and are absent in the layer that is dragged into deep mantle by the subducting slab. The position of volcanic front is not restricted by dehydration reactions in the subducting slab but is controlled by dynamics of mantle wedge flow, which governs the thermal structure and partial melting regime in the mantle wedge.  相似文献   

11.
盆山结合带地质条件复杂、地形起伏大,深地震反射资料具有信噪比低、各种干扰波严重以及速度横向变化大等特点。针对盆山结合部位深反射资料的特点,主要利用ProMAX处理系统对横跨若尔盖盆地和西秦岭造山带结合部位的二维深地震反射资料(简称SP04-2剖面)进行折射静校正、叠前去噪、地表一致性处理、人机交互速度分析、剩余静校正循环迭代处理、地表基准动校正叠加和叠后去噪处理等方法试验研究,形成一套适应盆山结合部位深地震反射资料的处理方法和流程,最终得到SP04-2叠加剖面。该剖面首次揭示出若尔盖盆地—西秦岭造山带盆山结合部位的岩石圈结构,为研究盆山深部接触关系提供了可靠的地震学依据。  相似文献   

12.
We construct fine-scale 3D P- and S-wave velocity structures of the crust and upper mantle beneath the whole Japan Islands with a unified resolution, where the Pacific (PAC) and Philippine Sea (PHS) plates subduct beneath the Eurasian (EUR) plate. We can detect the low-velocity (low-V) oceanic crust of the PAC and PHS plates at their uppermost part beneath almost all the Japan Islands. The depth limit of the imaged oceanic crust varies with the regions. High-VP/VS zones are widely distributed in the lower crust especially beneath the volcanic front, and the high strain rate zones are located at the edge of the extremely high-VP/VS zone; however, VP/VS at the top of the mantle wedge is not so high. Beneath northern Japan, we can image the high-V subducting PAC plate using the tomographic method without any assumption of velocity discontinuities. We also imaged the heterogeneous structure in the PAC plate, such as the low-V zone considered as the old seamount or the highly seismic zone within the double seismic zone where the seismic fault ruptured by the earthquake connects the upper and lower layer of the double seismic zone. Beneath central Japan, thrust-type small repeating earthquakes occur at the boundary between the EUR and PHS plates and are located at the upper part of the low-V layer that is considered to be the oceanic crust of the PHS plate. In addition to the low-V oceanic crust, the subducting high-V PAC plate is clearly imaged to depths of approximately 250 km and the subducting high-V PHS zone to depths of approximately 180 km is considered to be the PHS plate. Beneath southwestern Japan, the iso-depth lines of the Moho discontinuity in the PHS plate derived by the receiver function method divide the upper low-V layer and lower high-V layer of our model at depths of 30–50 km. Beneath Kyushu, the steeply subducting PHS plate is clearly imaged to depths of approximately 250 km with high velocities. The high-VP/VS zone is considered as the lower crust of the EUR plate or the oceanic crust of the PHS plate at depths of 25–35 km and the partially serpentinized mantle wedge of the EUR plate at depths of 30–45 km beneath southwestern Japan. The deep low-frequency nonvolcanic tremors occur at all parts of the high-VP/VS zone—within the zone, the seaward side, and the landward side where the PHS plate encounters the mantle wedge of the EUR plate. We prove that we can objectively obtain the fine-scale 3D structure with simple constraints such as only 1D initial velocity model with no velocity discontinuity.  相似文献   

13.
Ultrasonic laboratory measurements of P-wave velocity (Vp) were carried out up to 1.0 GPa in a temperature range of 25–400 °C for crustal and mantle xenoliths of Ichino-megata, northeast Japan. The rocks used in the present study cover a nearly entire range of lithological variation of the Ichino-megata xenoliths and are considered as representative rock samples of the lower crust and upper mantle of the back arc side of the northeast (NE) Honshu arc. The Vp values measured at 25 °C and 1.0 GPa are 6.7–7.2 km/s for the hornblende gabbros (38.6–46.9 wt.% SiO2), 7.2 km/s for the hornblende-pyroxene gabbro (43.8 wt.% SiO2), 6.9–7.3 km/s for the amphibolites (36.1–44.3 wt.% SiO2), 8.0–8.1 km/s for the spinel lherzolites (46.2–47.2 wt.% SiO2) and 6.30 km/s for the biotite granite (72.1 wt.% SiO2). Combining the present data with the Vp profile of the NE Honshu arc [Iwasaki, T., Kato, W., Moriya, T., Hasemi, A., Umino, N., Okada, T., Miyashita, K., Mizogami, T., Takeda, T., Sekine, S., Matsushima, T., Tashiro, K., Miyamachi, H. 2001. Extensional structure in northern Honshu Arc as inferred from seismic refraction/wide-angle reflection profiling. Geophys. Res. Lett. 28 (12), 2329–2332], we infer that the 15 km thick lower crust of the NE Honshu arc is composed of amphibolite and/or hornblende (±pyroxene) gabbro with ultrabasic composition. The present study suggests that the Vp range of the lower crustal layer (6.6–7.0 km/s) in the NE Honshu arc, which is significantly lower than that obtained from various seismic measurements (e.g. the northern Izu-Bonin-Mariana arc: 7.1–7.3 km/s), is due to the thick hydrous lower crustal layer where hornblende, plagioclase and magnetite are dominant.  相似文献   

14.
Three dimensional P-wave velocity structure beneath the Tohoku district, northeastern Japan arc, is investigated by an inversion of arrival times from local earthquakes using the method originally due to Aki and Lee (1976).In the crust (0–32 km depth) a low-velocity region is found along the volcanic front and its vicinity. Velocities at depths of 32–65 km are low beneath the regions where many Quaternary volcanoes and geothermal areas are distributed. In the region deeper than 65 km, the subduction of the Pacific plate is clearly revealed, and the mantle structure above the descending plate is rather uniform. These features suggest that volcanic activities have relation to the upper mantle structure. The results obtained in this study will be helpful in investigating the mechanism of magma generation in a subduction zone.  相似文献   

15.
16.
Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns.  相似文献   

17.
The Ou Backbone Range strikes northwards through the central northeastern Japan arc and is bounded on both sides by the active reverse Uwandaira and Sen'ya faults. We have applied a traveltime inversion method (seismic tomography) with spatial velocity correlation to active and passive seismic data in order to investigate a three-dimensional (3-D) velocity structure. The data set contains 33,993 P- and 18,483 S-wave arrivals from 706 natural sources and 40 blasts, as well as 2803 P-wave traveltime data from 10 explosions detonated during the 1997 controlled source experiment. The traveltime inversion reveals a zone beneath the Ou Backbone Range in which P-wave velocities (VP) are approximately 6–8% lower than the average velocity at equivalent depths. The low VP and a low VP to S-wave velocity (VS) ratio (VP/VS) of about 1.65 suggest the presence of aqueous fluids in the middle crust.  相似文献   

18.
The P-wave velocity structure of the upper crust beneath a profile ranging from Niikappu to Samani in the southwestern foot of the Hidaka Mountains, Hokkaido, Japan was obtained through analysis of refraction and wide-angle reflection data. The mountains are characterized by high seismicity and a large gravity anomaly. The present profile crosses the source region of the 1982 Urakawa-oki earthquake (Ms 6.8). The length of the profile is 66 km striking northwest and southeast. Along the profile, 64 vertical geophones were set up and 5 shot points were chosen. For each shot, a 400–600 kg charge of dynamite was detonated. The studied area is composed of four major geological belts: Neogene sedimentary rocks, the Kamuikotan belt, the Yezo Group, and the Hidaka belt. The measurement line crosses these geological trend at an oblique angle. The structure obtained is characterized by remarkable velocity variations in the lateral direction and reflects the surface geological characteristics. A thin, high-velocity layer (HVL) was found between low-velocity materials in the central part of the profile, beneath the Kamuikotan Metamorphic Belt, at a depth ranging from 0.5 to 6 km, overthrusting toward the west on the low-velocity materials consisting of Neogene sedimentary rocks, and forming gentle folds. Outlines of the velocity structure of the Hidaka Mountains yielded by other studies have shown a large-scale overthrust structure associated with the collision of the Outer Kurile and the Outer Northern Honshu Arcs. The shallow velocity structure inferred by the present study showed a similar (although small scale) overthrust structure. The obtained structure shows that the composite tectonic force, comprising westward movement of the Outer Kurile Arc and northward movement of the Outer Northern Honshu Arc, plays an important role in the evolution of the tectonic features of the crust and upper mantle in a wide depth range beneath the Hidaka Mountains.  相似文献   

19.
We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Second-order clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E–W deeper strike–slip faults cutting the crystalline basement of the chain.  相似文献   

20.
Seismogeologic sections for the Barents-Kara region along geotraverses 1-AR, 2-AR, and 3-AR with a total length of about 4000 km were obtained using the GODOGRAF software package developed at the Department of Seismometry and Geoacoustics of the Moscow State University. The data were travel times of refracted waves excited by approximately 100 sources along each traverse. This paper reports sections for the 3-AR traverse covering areas of the White Sea, Pechora Sea, and Kara Sea, and a geological interpretation of these. The sections cover depths down to 40–50 km and show basic crustal discontinuities, fold-thrust, rift, and paleospreading structural features, and paleosubduction zones. We characterize the possible character of the junction between the South Kara and North Kara basins. A geodynamic interpretation of the structures is provided for the Barents-Kara region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号