首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder,简称GIIRS)是国际上第一部对地静止卫星平台上的高光谱红外大气垂直探测仪,能为对流尺度区域模式预报提供所需的高时空和高光谱分辨率的大气状态信息。本文利用高分辨率区域模式WRF及其同化系统WRFDA对GIIRS观测的偏差(观测亮温减去模拟亮温,记为O?B)分布特征进行了全景分析,结果表明:长波通道O?B偏差和标准差普遍小于中波通道,且都存在一段受污染的通道。O?B偏差的日变化和偏差与卫星天顶角的关系相对较弱,而所有筛选通道的偏差都与亮温值及卫星的扫描阵列位置有关,偏差的水平分布主要表现出“阵列偏差”的特征。2020年重新定标后,GIIRS观测数据质量比2019年有明显提高。在此基础上进一步进行了偏差订正试验,试验发现选取扫描阵列作为偏差订正的主要因子,都能有效地改进2019年和2020年筛选出的GIIRS通道的偏差,订正后O?B和O?A的系统性误差(偏差)都变小。该研究结果可为全球/区域模式中同化GIIRS长波及中波通道的辐射资料提供参考。  相似文献   

2.
FY-3A微波资料偏差订正及台风路径预报应用   总被引:2,自引:0,他引:2       下载免费PDF全文
我国极轨气象卫星FY-3A大大增强了对地球系统的综合探测能力,而偏差订正对卫星资料的应用非常必要。试验中FY-3A卫星微波资料的偏差订正方案是在Harris等的TOVS辐射资料偏差订正经验方法的基础上结合WRF-3DVAR系统发展的,偏差订正后微波资料各通道拟合结果基本位于主对角线上,大多数卫星观测数据与观测算子利用背景场计算的亮温值分布趋于合理,偏差得到很大程度的降低。偏差订正后,利用数值模式直接同化FY-3A气象卫星微波资料,通过对2008年和2009年的4个台风进行预报评估表明:同化FY-3A气象卫星资料后路径预报能力提高明显,尤其是36 h后路径预报结果;同化FY-3A气象卫星微波资料后台风预报路径误差平均降低20%,而只同化常规资料路径误差仅仅降低了4%。  相似文献   

3.
风云三号卫星微波大气温度探测仪资料偏差订正方法研究   总被引:2,自引:0,他引:2  
为推动中国风云三号卫星(FY-3A/B)资料在区域数值天气预报中的同化研究,重点研究FY-3A的大气温度垂直探测仪(MWTS)资料的偏差订正问题。在欧洲中期天气预报中心(ECMWF)原全球TOVS辐射偏差订正方案的基础上,结合MWTS资料特征,建立适用于FY-3A卫星MWTS辐射率资料的偏差订正系统,并评价MWTS的偏差订正效果。结果表明:(1) 同纬度带和扫描位置的扫描偏差不同,各通道表现出不同的偏差特征,通道1扫描偏差较大(0~5 K),通道2、3、4较小(0~0.6 K);(2) 扫描偏差订正和气团偏差订正后的观测残差基本符合均值为零的正态分布;(3) 偏差订正后的观测残差标准方差有所降低,这将提高卫星资料对分析场的调整。证明了FY-3A MWTS资料质量较好,具有同化应用的潜力,开发的偏差订正系统可为FY-3A MWTS资料在区域模式中的同化应用提供条件。   相似文献   

4.
首先统计分析了FY-3A卫星MWHS(Micro Wave Humidity Sounder,微波湿度计)2010年1月整月和8月28日—9月6日Level-1b全球观测亮度温度T_O和背景场(NCEP GFS 6 h预报场)用辐射传输模式(美国通用辐射传输模式CRTM 2.0版本)模拟的亮度温度T_B随扫描角的分布特征,发现通道3和4的观测随仪器扫描角有抖动、不连续现象。同时沿着仪器扫描线在星下点两测存在观测不对称现象,而且权重函数峰值越接近地面的通道该不对称现象越明显。在统计观测增量T_O-T_B随扫描角和纬度变化的基础上,定量给出了不同纬度带内(每隔5个纬度)MWHS通道3、4和5的扫描角偏差订正系数,该系数可直接提供给各种资料同化系统同化FY-3A MWHS资料时使用。  相似文献   

5.
应用FY-3A/MWHS资料反演太平洋海域晴空大气湿度廓线   总被引:1,自引:0,他引:1  
发展Smith迭代算法,建立适用于微波波段的物理迭代算法。采用搭载于FY-3A卫星之上的微波湿度计亮温数据及矢量辐射传输模式,对我国西北太平洋海域晴空区域的大气水汽廓线进行反演计算。反演得到的水汽廓线与MODIS水汽廓线产品比较,单点结果表明,反演混合比廓线与MODIS水汽廓线趋势一致,下层水汽反演能力较中上层强;500 hPa水汽场反演结果表明,可基本反映水汽干湿中心分布情况,反演水汽混合比值与MODIS产品相比偏低。经统计所有气压层反演结果与MOD07水汽廓线产品相比偏差均控制在5.76 g/kg以内。   相似文献   

6.
根据IASI(Infrared Atmospheric Sounding Interferometer)的资料特征和GRAPES(Global/Regional Assimilation and Prediction System)同化系统的具体情况,建立了适用于业务使用的关于IASI辐射率资料的偏差订正方案,该方案包括扫描偏差订正和气团偏差订正。统计表明,IASI资料的扫描偏差不像微波资料一样具有明显的纬度依赖性,但在2x2的像元内存在某种特殊的扫描偏差,临边测量相对于星下点的扫描偏差可以用"扫描角"作为自变量而消除,而2x2的像元内的偏差只能通过稀疏化来规避;气团偏差主要根据当时的天气条件进行订正,利用模式背景场作为预报因子定量给出天气条件,采用1 000~300 h Pa的厚度、200~50 h Pa的厚度、50~20 h Pa的厚度以及模式地表温度作为预报因子。订正方案的试验结果显示,偏差能够长时间维持在比较低的稳定水平,订正结果显著。  相似文献   

7.
风云四号A星(Fengyun-4A,简称FY-4A)作为我国最新一代静止气象卫星,各方面技术指标都体现了“高、精、尖”特色,处于国际领先地位。其上搭载的多通道扫描成像辐射计(Advanced Geosynchronous Radiation Imager,简称AGRI)较上一代静止卫星风云二号的可见光红外自旋扫描辐射仪观测精度更高、扫描时间更短,充分体现AGRI观测资料将有效提高“一带一路”沿线国家和地区的天气预报和灾害预警水平。偏差订正是卫星资料处理的重要环节之一,因此本文通过在WRFDA v3.9.1(Weather Research and Forecasting model’s Data Assimilation v3.9.1)搭建AGRI同化接口,利用RTTOV v11. 3辐射传输模式和GFS全球预报系统(Global Forecast System)分析场研究了FY-4A AGRI红外通道8~14晴空辐射率资料的偏差特征并进行偏差订正对比试验,分析了卫星天顶角对AGRI资料偏差订正的影响,为将来实现AGRI红外通道辐射率资料在中尺度模式中的同化应用奠定基础。结果表明:(1)通道8~10及14为正偏差,通道11~13为负偏差。水汽通道9和10偏差及其标准差相对较小,偏差海陆差异不明显。通道11~14探测高度较低,陆地上观测受地表发射率影响大,质量控制时可剔除这些通道陆地上的观测。(2)各通道偏差随卫星天顶角变化的拟合直线斜率都小于0.035,对比试验结果表明偏差与卫星天顶角的关系不明显,预报因子中无需考虑卫星天顶角的作用。(3)通道8及11~14的偏差随着目标亮温的变化比水汽通道9~10明显,偏差有较强的目标亮温依赖特征。(4)根据分析的偏差特征对2018年5月13日18时(协调世界时,下同)至15日18时进行变分偏差订正试验,系统性偏差得到了有效的订正。  相似文献   

8.
提出一种针对FY-3C搭载的微波辐射成像仪(MWRI)海表温度产品的分段回归偏差订正方法,该方法通过引进气候态海表温度数据,建立与关联实测海表温度相匹配的回归模型,并通过对模型中关联变量的误差分析,选择最优样本进行分段回归,以实现对海表温度数据的重新估计。通过对MWRI海表温度数据的偏差订正试验表明,采用分段回归方法获得的订正结果无论在误差指标的空间分布还是时间序列上,都要明显优于采用传统概率密度函数偏差订正方法的结果。其中,采用概率密度函数方法订正后的海表温度产品误差标准差和均方根误差从订正前的0.9—1.0℃,减小到0.8℃左右,而采用分段回归方法获得相应的订正误差仅为0.6℃左右,订正效果有明显改善。  相似文献   

9.
根据微波湿度计MHS(Microwave Humidity Sounder)辐射率资料及GRAPES(Global/Regional Assimilation and Pr Ediction System)模式的特点,建立适用于MHS资料的偏差订正系统,该系统包括扫描和气团偏差订正,其中气团偏差订正考虑水汽资料的特性,采用三种不同预报因子组合的方案。偏差订正结果表明:MHS各个通道的扫描偏差表现出不同特征;偏差订正后观测残差基本服从均值为零的高斯分布,且观测残差的均值有所降低并随时间变化平稳;三种气团偏差订正方案都有明显的订正效果,其中方案三的订正效果最佳。  相似文献   

10.
胡言青  官莉 《气象科学》2013,33(1):59-65
针对FY-3A卫星微波湿度计MWHS(Microwave Humidity Sounder)资料的质量控制进行研究.选用2010年冬季1月17-23日FY-3A微波湿度计MWHS LlC格式的全球观测资料作为研究对象,采用双权重算法对观测增量O-B进行质量控制,其中O是Fy-3A微波湿度计观测的亮度温度,B是基于NCEP GFS全球预报系统6h预报场用辐射传输模式RTTOV模拟的亮度温度值,目的是剔除受地表发射率或云影响的离群资料.结果表明,通过双权重的质量控制后,FY-3AMWHS3、4、5通道O-B的标准差明显减小了2~3K,同时,质量控制后O-B偏差和标准差随时间窗变化也很稳定,可见该方法除去异常资料的效果较为理想,能够应用到卫星资料的质量控制中.  相似文献   

11.
L波段探空仪观测资料是基础资料之一,无论在天气预报还是在数值天气预报中都起着重要作用,其资料质量直接影响数值模式同化分析及降水预报准确性。通过对我国3种常用的L波段探空仪观测湿度的偏差特性比较,研发适合该仪器的偏差订正方案,并在GRAPES同化系统中加以试验应用。结果表明:L波段探空仪湿度观测资料与ECMWF再分析湿度场比较有偏干现象。多种偏差订正方案订正结果显示:湿度偏差值比订正前减小,特别是在500 hPa以上层次减小明显。在GRAPES分析同化系统中使用Vomel偏差订正方案,分析偏差减小5%;预报模式个例和连续试验中湿度观测订正后预报降水更接近实况,预报降水检验评分显著提高,故该订正方案在实际应用中表现出积极的正效果。  相似文献   

12.
中国L波段探空湿度观测资料的质量评估及偏差订正   总被引:4,自引:1,他引:4  
L波段探空观测资料无论在天气预报还是数值预报中均为最基本和最重要的一类数据,而其湿度观测资料的质量对同化分析及降水预报有直接影响。通过用L波段探空湿度观测资料与不同类型的其他观测反演的湿度资料互校及与NCEP、GRAPES、EC等不同模式分析场为背景的湿度场比较,评估中国L波段探空湿度观测资料的质量状况,对探空湿度资料的质量有了新的认识,为更好地使用该资料提供依据。研究发现中国L波段探空湿度观测资料存在偏干的现象,特别是当背景场湿度大于60%时,观测湿度偏低更加明显。通过分析其偏差特征,找出了适合中国L波段探空湿度观测资料偏差特点的分段函数订正方法。个例试验表明,对探空湿度观测资料的偏差订正后,观测偏差明显减小,订正效果非常显著;模式降水强度预报能力有一定的提高。从连续试验检验的降水预报评分(TS)和预报偏差(Bias)看,中雨和暴雨的预报在探空湿度观测偏差订正后都表现出正效果。  相似文献   

13.
FY-3A微波资料在“莫拉克”台风预报中的同化试验   总被引:5,自引:1,他引:5  
我国新一代极轨气象卫星FY-3A于2008年5月26日发射成功,携带的微波垂直探测仪与NOAA系列卫星的ATOVS性能相似。为研究微波垂直探测仪资料在台风数值预报中的作用,实现我国FY-3A卫星的微波探测资料的直接同化,达到改进台风预报的目的,利用FY-3A微波探测资料,以WRF-3DVar系统为基础,针对2009年第8号台风"莫拉克"路径和强度预报,开展数值预报直接同化技术研究。试验结果表明,直接同化FY-3A微波资料对数值模式初始场改进要优于仅仅同化常规观测资料,对缺乏观测资料的海洋上改进尤为明显,模式初始场更加合理地反映海上台风环流形势以及温湿条件,海上台风的模式初始位置也得到了校正;经过FY-3A微波资料三维变分直接同化后,区域中尺度模式对台风路径预报效果具有积极的改善作用。  相似文献   

14.
中亚地区常规气象观测稀疏,同化极轨卫星FY-3C上的微波湿度探测器-Ⅱ(MWHS-Ⅱ)辐射率资料可有效减小该地区数值预报初始场的不确定性。本研究首次在中亚快速更新多尺度资料分析和预报系统RMAPS-CA中同化了FY-3C/MWHS-Ⅱ辐射率,评估了其同化效果。研究发现:(1)单个时次冷启动的同化时间窗口内,仅约有56%的辐射率资料通过了质量控制并被RMAPS-CA同化。(2)偏差订正整体减小了各水汽通道的背景场辐射亮温偏差,最大减幅出现在通道14,达0.5 K。通道14偏差订正前的观测辐射亮温和背景场辐射亮温间存在较大偏差,是其同化应用中需要特别注意的。(3)FY-3C/MWHS-Ⅱ辐射率同化整体提高了RMAPS-CA系统对高空温度、位势高度、高空风速等的中短期预报准确率。同时,使得2米温度和10米风速的预报准确率预报均方根误差分别平均减小了0.2 K和2 m/s。其同化有效降低了小雨预报的漏报率和空报率,小雨预报的TS评分提升了16%。降低了中雨和大雨预报的漏报率,三个量级降水预报的BIAS评分分别提升了18%、38%和36%。  相似文献   

15.
青藏高原探空大气水汽偏差及订正方法研究   总被引:4,自引:1,他引:3  
水汽是大气的主要成分和降水的主要物质来源.青藏高原大气水汽分布对区域天气和气候有很大影响,为了探讨探空观测的大气水汽总量(R)资料的可靠性,本文以地基GPS遥感的大气水汽总量(G)为参照标准,对拉萨(1999~2010年)和那曲(2003年)的R进行对比分析和偏差(R-G)订正.结果表明:近10多年拉萨站R比G明显偏小,偏小程度随使用不同的探空仪而异.GZZ-2型机械探空仪和GTS-1型电子探空仪多年平均的PW偏差分别为-8.8%和-3.9%,随机误差分别为17.6%和13.6%.近10多年PW偏差变化呈减少趋势,这与探空仪性能改进有关.分析发现,青藏高原PW偏差具有明显季节变化和日变化特征,  相似文献   

16.
《高原气象》2021,40(4):932-942
研究以内蒙古地面辐射观测为基准,进行FY-4A逐时总辐照度在内蒙古地区的适用性评估,并尝试利用概率密度匹配方法(PDF)进一步对FY-4A逐时总辐照度进行订正,结果表明:(1)FY-4A总辐照度与地面辐射观测的相关性在季节上表现为春、夏、秋季三季明显高于冬季,在空间上表现为东部地区的相关性好于西部,误差方面具有明显的对低值辐射高估,高值辐射低估的非独立系统误差特征;(2)按季建立PDF模型,可以反映地面观测与FY-4A总辐照度在内蒙古地区稳定的概率密度分布特征,有效改善FY-4A总辐照度在内蒙古地区的适用性;(3)PDF方法在有效减小卫星资料系统误差的同时,还较好地保持了卫星资料原有的误差分布特征,并对云天辐照度的改进效果明显。  相似文献   

17.
FY-3A MWHS微波湿度计辐射率资料空间分辨率高,同化后能有效地提高中尺度系统的数值预报的准确率。但如果不进行质量控制,任由误差大的离群微波资料进入同化系统,将会降低分析场精度,影响预报准确率。本文选取2010年8月17~19日的暴雨个例,应用主成分分析(PCA)方法,找出FY-3A微波湿度计数据中的离群值。结果表明:采用PCA方法,3天的资料总共识别出148个离群值样本,占总数的19.3%,其中通道三离群值占5.5%,通道四离群值占8.2%,通道五占5.4%。去除这些离群值后的MWHS数据总体分布,更靠近数据中心,各EOF方差贡献更加平滑。这说明PCA方法是一种可以抵抗少数离群值对总平均值影响的有效质量控制方法。   相似文献   

18.
崔林丽  杨引明  游然  方翔 《高原气象》2012,31(5):1439-1445
基于0903,0906和0908号台风期间的FY-3A极轨卫星微波湿度计(FY-3A/MWHS)数据,借助于多元线性逐步回归方法,探讨了利用FY-3A极轨卫星定量估计降水的方法,同时结合自动气象站实测资料、TRMM和FY-2C卫星降水估计结果对FY-3A/MWHS降水估计精度进行了验证。结果表明,FY-3A/MWHS估计降水与地面实测降水具有较好的相关性,对不同等级雨量均有一定的估测能力,尤其对中等量级的降水无论是在降水落区还是在降水量级上均具有较高的准确率。与FY-2C静止卫星相比,无论是在对不同量级降水估计的"击中率",还是在估计精度方面,FY-3A/MWHS数据更具优势。利用FY-3A/MWHS对不同高度、不同角度的湿度响应特性开展定量降水估计,是降水估计方法的一种新的探索和必要的补充。  相似文献   

19.
王雪曼  李刚  张华 《气象》2015,41(7):863-871
偏差订正技术是卫星辐射率资料同化的关键技术,目前全球GRAPES变分同化系统采用基于Harris和Kelly考虑扫描角和气团的静态偏差订正方案;但是该方案并没有考虑偏差属性的变化(比如仪器老化、观测数据漂移等问题)。因此,本文基于Harris和Kelly的TOVS辐射偏差订正方案以及国外在数值天气预报系统中对卫星数据提出的偏差订正动态更新概念的基础上,结合GRAPES分析预报系统和国家卫星气象中心的卫星预处理系统的特点以及仪器特征,提出了GRAPES偏差订正动态更新方案,来解决数据的漂移等问题。偏差订正动态更新技术是动态方法的一种,采用变分方法对偏差订正预报因子的系数进行调整。为了检验新方案的效果,设计了试验方案。为期两个月的同化试验结果显示,动态更新方案可以自动、迅速地优化已经退化的偏差订正方程,保持偏差订正的效果,运行稳定,结果令人鼓舞。  相似文献   

20.
搭载在中国新一代极轨卫星FY-3A上的微波湿度计对于大气湿度以及云雨分布特征具有较好的探测能力。利用其150 GHz极化波段亮温和183.31 GHz附近的水汽吸收波段亮温及其反演产品,对2008年7月22日襄樊特大暴雨中10:00—11:00强降水成因进行了分析。结果表明:襄樊10:00—11:00强降水产生时,微波湿度计5个波段亮温均处于低值区的大梯度带;极化比、极化差出现明显的大、小值分裂;微波湿度计的高频通道资料表明,襄樊处于深对流中心地带,正是这种深厚的对流系统导致了襄樊的强降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号