首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (ΔG) for the forward reaction is sensitive to dihydroxyaromatic structure, pH, and concentrations of reactants and products. Here, we address the back reaction, benzoquinone reduction by FeII. Rates markedly increase with increasing pH, in accord with increases in ΔG. Ring substituents that raise the potential of the p-benzoquinone/hydroquinone half reaction raise reaction rates: –OCH3 < –CH3 < –C6H5 < –H < –Cl. p-Naphthoquinone, with a reduction potential lower than the five substituted p-benzoquinones just listed, yields the lowest reaction rates. The complexity of the reaction is reflected in lag periods and less-pronounced S-shaped time course curves. Benzoquinone reduction by FeII may be an important link in networks of electron transport taking place in suboxic and anoxic environments.  相似文献   

2.
Magnetite-bearing mylonitic garnet–micaschists close to the major suture between the Baltica and Iapetus terranes (Seve Nappe Complex, Scandinavian Caledonides) show very high anisotropy of magnetic susceptibility (AMS) with corrected degree of anisotropy (P′) up to 4.8. Three different magnetic fabric types can be distinguished. They correspond to protomylonite (type I, P′ < 2), mylonite (type II, 2 < P′ < 3), and ultramylonite (type III, P′ > 3), respectively. The orientation of the ellipsoid axes from all applied magnetic fabric methods in this study is similar with shallow dips of the metamorphic foliation toward WSW and subhorizontal, mostly NW–SE trending mineral lineation. Differences between subfabrics were minimized under high shear strain as all markers tend to align parallel with the shear plane. The very high anisotropies and mostly oblate ellipsoid shapes of type III correlate with high magnetic susceptibility (k mean up to 55 × 10−3 SI units) and are related to the concentration of magnetite aggregates with shape-preferred orientation. They show a distinct field dependence of magnetic susceptibility of up to 10% in the k max-direction. We attribute this field dependence to a “memory” of high strains in the domain walls of the crystals acquired during synkinematic magnetite growth during shear zone fabric development at temperatures of 550–570°C.  相似文献   

3.
A multi-anvil device was used to synthesize 24 mg of pure γ-Fe2SiO4 crystals at 8.5 GPa and 1,273 K. The low-temperature heat capacity (C p) of γ-Fe2SiO4 was measured between 5 and 303 K using the heat capacity option of a physical properties measurement system. The measured heat capacity data show a broad λ-transition at 11.8 K. The difference in the C p between fayalite and γ-Fe2SiO4 is reduced as the temperature increases in the range of 50–300 K. The gap in C p data between 300 and 350 K of γ-Fe2SiO4 is an impediment to calculation of a precise C p equation above 298 K that can be used for phase equilibrium calculations at high temperatures and high pressures. The C p and entropy of γ-Fe2SiO4 at standard temperature and pressure (S°298) are 131.1 ± 0.6 and 140.2 ± 0.4 J mol−1 K−1, respectively. The Gibbs free energy at standard pressure and temperature (Δ f,298) is calculated to be −1,369.3 ± 2.7 J mol−1 based on the new entropy data. The phase boundary for the fayalite–γ-Fe2SiO4 transition at 298 K based on current thermodynamic data is located at 2.4 ± 0.6 GPa with a slope of 25.4 bars/K, consistent with extrapolated results of previous experimental studies.  相似文献   

4.
This paper presents results of analysis of full-scale pile load test data of 14 piles embedded in either loose or medium dense sands. The analysis was performed using two methods, py curve approach and a more recently developed khmax approach. Comparison of the results obtained using both the methods is also presented. A step-by-step analysis procedure is presented for predicting lateral load deflection response of single piles in sand using the khmax approach. The results presented show that the khmax approach has promise over the py curve approach because of its simplicity and the fact that it provides upper- and lower-bound curves, which are valuable guides to making engineering decisions. For loose sands, a new range of khmax values is recommended to better predict the lateral load–deflection response of single piles.  相似文献   

5.
Results of long-term (2002–2010) monitoring of giant radio pulses of the pulsar PSR B0531+21 in the Crab Nebula at ν = 44, 63, and 111 MHz are reported. The observations were conducted on the LPA and DKR-1000 radio telescopes of the Lebedev Physical Institute. The giant pulses were analyzed using specialized software for calculating the magnitude of the scattering τ sc , signal-to-noise ratio, and other required parameters by modeling the propagation of a pulse in the scattering interstellar medium. Three pronounced sharp increases in the scattering were recorded in 2002–2010. Analysis of the dependence between the variations of the scattering and dispersion measure (data of Jodrell Bank Observatory) shows a strong correlation at all frequencies, ≈0.9. During periods of anomalous increase in scattering and the dispersion measure, the index γ in the frequency dependence of the scattering in the Crab Nebula, τ sc (ν) ∝ ν γ , was smaller than the generally accepted values γ = 4.0 for a Gaussian and γ = 4.4 for a Kolmogorov distribution. This difference in combination with the piece-wise power-law spectrum may be due to the presence of a dense plasma structure with developed Langmuir turbulence in the nebula, along the pulsar’s line of sight. The magnetic field in the Crab Nebula estimated from measurements of the rotation measure toward the pulsar is 100 μG.  相似文献   

6.
Six members of the annite–siderophyllite join were synthesized in a three step process – crystallization of biotite from gels, decomposition of the fine-grained biotite under oxidizing conditions and resynthesis of Fe-Al biotite with planned compositions from these products – producing biotite crystals with thicknesses of up to 10 μm. The biotite was characterized by microprobe, electron microscopy and X-ray diffraction. Heat capacities of these biotites were measured with a DSC (differential scanning calorimeter) over the temperature range 143 to 623 K. Using a least-squares technique, the data were fitted to a cp-polynomial, c p =k 0+k 1 T −0.5+ k 2 T −2+k 3 T −3. In the temperature range 143 to 250 K, heat capacities of the different annite–siderophyllite members decrease linearly with increasing Al content. At higher temperatures, however, the cp-polynomial of biotites with intermediate composition (except Ann79Sid21) exhibit a steeper slope than those of other biotites. This produces positive excess heat capacities in the annite–siderophyllite join at higher temperatures. The activity-composition data of the same binary derived from phase equilibrium experiments (Benisek et al. 1996) and the data of this study suggest two compositional regions along this join, with different extent of deviation from ideality. One at X Sid < 0.3, characterized by a small deviation, one at X Sid > 0.3 showing a higher nonideality, resulting in a discontinuity visible at this composition. Powder IR-spectra of these solid solutions were measured with a FTIR-spectrometer and used to calculate heat capacities according to the vibrational model of Kieffer (1979). The comparison of the vibrational function with the cp-polynomials shows that the vibrational function reproduces well the DSC-data of the siderophyllite-poor and -rich members, but deviates for intermediate compositions, where the excess heats of mixing occur. With increasing Tschermak vector, the tetrahedral rotation angle α increases from 0 to 13° for annite to siderophyllite, respectively. At the composition of the discontinuity, this rotation angle α reaches a value of ∼8. The processing of ∼300 chemical data of natural biotites indicates that over 90% of them have a tetrahedral rotation angle that lies between 7 and 9°. It would appear that biotites with these structural characteristics are most stable. Received: 27 August 1998 / Accepted: 10 November 1998  相似文献   

7.
We have analyzed polarization observations of the subdwarf Bal 09, which is one of a group of hybrid sdB stars that display simultaneously both short- and long-period pulsations. Certain properties previously unknown for subdwarfs have been established for Bal 09, such as variations of the pulsation amplitude of the main oscillation mode, rotational splitting of multiplets, and variations of this splitting. Information about the stellar magnetic field must be considered if we wish to explain these properties. New observational data enabling estimation of the longitudinal magnetic field of Bal 09 have been obtained on the main stellar spectrograph of the 6-m telescope of the Special Astrophysical Observatory. Studies of the longitudinal component of the magnetic field 〈B z 〉 were carried out using a regression analysis. This method simultaneously yields estimates of the uncertainty in 〈B z 〉. Test measurements of 〈B z 〉 were carried out using the same method. For the star HD 158974, which has zero total magnetic field, the estimated longitudinal magnetic field is 〈B z 〉 = −4 ± 5 G. The standard magnetic field for the Ap star α 2CVn was measured to be −363 ± 17 G, in very good agreement with measurements in the literature. The estimated longitudinal magnetic field for Bal 09 is 34 ± 63G—appreciably lower than values established earlier for six subdwarfs, ≈1.5 kG. The results of the regression analysis for both individual spectral subranges and for intervals containing characteristic spectral features did not indicate reliable detections of a magnetic field exceeding the uncertainties in 〈B z 〉. The uncertainty in 〈B z 〉, which was 60–80 G for the entire spectral range and 140–200 G for selected spectral intervals, leads to an estimated upper limit on the longitudinal magnetic field 〈B z 〉 for Bal 09. This estimate for 〈B z 〉 can place observational constraints on theoretical explanations for the amplitude variations of the pulsations, rotational splitting of multiplets, and possible variations of the internal structure of the star.  相似文献   

8.
During the magnetic storm of 21st March 1990, the DE-1 spacecraft encountered the auroral region at high invariant latitude at altitudes ranging from a few thousand kilometers in the ionosphere to many earth radii in the magnetosphere. The magnetic field perturbations interpretable as field aligned current (FAC) layers and the electrostatic turbulence possibly due to electrostatic ion acoustic instability driven by these currents are shown. The critical drift velocity of Hot Plasma Torus (HPT) electrons and the growth rate of ion acoustic wave as a function of electron to ion temperature ratio (T e/Ti) for low and high current densities and energy of HPT electrons are found out. The intense FAC destabilizes the ion acoustic wave and the resultant electrostatic turbulence creates an anomalous resistivity. The current driven resistivity produces parallel electric field and high power dissipation. The anomalous resistivityη, potential difference along the auroral field lines Vt|, intensity of electric field turbulenceE t| and power produced per unit volumeP are computed. It is found that the change in westward magnetic perturbation increasesJ t|, η, Vt|, Et| andP. Hence HPT electrons are heated and accelerated due to power dissipation during magnetically active periods in the auroral region. Concerning, applications, such HPT electrons can be used in particle accelerators like electron ring accelerator, smokatron etc.  相似文献   

9.
The low-temperature isobaric heat capacities (C p) of β- and γ-Mg2SiO4 were measured at the range of 1.8–304.7 K with a thermal relaxation method using the Physical Property Measurement System. The obtained standard entropies (S°298) of β- and γ-Mg2SiO4 are 86.4 ± 0.4 and 82.7 ± 0.5 J/mol K, respectively. Enthalpies of transitions among α-, β- and γ-Mg2SiO4 were measured by high-temperature drop-solution calorimetry with gas-bubbling technique. The enthalpies of the α−β and β−γ transitions at 298 K (ΔH°298) in Mg2SiO4 are 27.2 ± 3.6 and 12.9 ± 3.3 kJ/mol, respectively. Calculated α−β and β−γ transition boundaries were generally consistent with those determined by high-pressure experiments within the errors. Combining the measured ΔH°298 and ΔS°298 with selected data of in situ X-ray diffraction experiments at high pressure, the ΔH°298 and ΔS°298 of the α−β and β−γ transitions were optimized. Calculation using the optimized data tightly constrained the α−β and β−γ transition boundaries in the P, T space. The slope of α−β transition boundary is 3.1 MPa/K at 13.4 GPa and 1,400 K, and that of β−γ boundary 5.2 MPa/K at 18.7 GPa and 1,600 K. The post-spinel transition boundary of γ-Mg2SiO4 to MgSiO3 perovskite plus MgO was also calculated, using the optimized data on γ-Mg2SiO4 and available enthalpy and entropy data on MgSiO3 perovskite and MgO. The calculated post-spinel boundary with a Clapeyron slope of −2.6 ± 0.2 MPa/K is located at pressure consistent with the 660 km discontinuity, considering the error of the thermodynamic data.  相似文献   

10.
We performed multi-anvil experiments in the system MgO-SiO2 ± H2O at 13.0–13.7 GPa and 1,025–1,300°C and in the system MgO-FeO-SiO2 ± H2O, under reducing conditions, at 11.0–12.7 GPa and 1,200°C, to depict the effect of H2O on the P-T-x coordinates of the 410-km discontinuity, i.e. the olivine–wadsleyite phase boundary. The charges were investigated with Electron Microprobe (EMP), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Secondary Ion Mass Spectrometry (SIMS) and Electron Energy Loss Spectroscopy (EELS). We observe in the MgO-SiO2-H2O system at 1,200°C a 0.6 GPa shift of the phase boundary to lower pressure compared to dry conditions, due to the stronger water fractionation into wadsleyite (wad) rather than in olivine (ol). In the MgO-FeO-SiO2-H2O system, we reproduced the triple point, i.e. observed coexisting hydrous ol, wad and ringwoodite (ring). SIMS H quantifications provided partitioning coefficients for water: D\textwad/ol\textwater D_{\text{wad/ol}}^{\text{water}}  ~ 3.7(5) and D\textring/ol\textwater D_{\text{ring/ol}}^{\text{water}}  ~ 1.5(2) and D\textwad/ring\textwater D_{\text{wad/ring}}^{\text{water}}  ~ 2.5(5). For a bulk composition of x Fe = 0.1, our data indicate only a slight difference in the width of the loop of the two phase field ol–wad under hydrous conditions compared to dry conditions, i.e. no broadening with respect to composition but a shift to lower pressures. For bulk compositions of x Fe > 0.2, i.e. in regions where wad–ring and ol–ring coexist, we observe, however, an unexpected broadening of the loops with a shift to higher iron contents. In total, the stability field of hydrous wad expands in both directions, to lower and higher pressures. Fe3+ concentrations as determined by EELS are very low and are expected to play no role in the broadening of the loops.  相似文献   

11.
In this study, magnetic techniques were used to characterize the surface soil from different geomorphologies (i.e., sand desert, oasis, Gobi, and dry lake) in Central Asia. Results demonstrate that the main magnetic minerals in the surface soil are magnetite, maghaemite and haematite with some paramagnetic materials. Cross plots of M rs/M s versus B cr/B c and χfd% versus χarm/saturation isothermal remanent magnetization (SIRM) indicate that the main magnetic grain sizes in surface soil are pseudo single domain (PSD) and multidomain (MD). The samples from West China (i.e., Tarim basin and Junggar basin) are dominated by magnetic minerals with larger grain size, while those from North China (i.e., Alxa plateau, Erdos plateau, and Mongolia plateau) are dominated by fine magnetic minerals. The similarity in magnetic mineral constitutions between the Chinese loess and the surface soils from Central Asia implies that the loess originated from a vast area of arid, semi-arid regions of Central Asia. The low value of concentration-dependent magnetic parameters indicates that the low concentration of magnetic minerals in the surface soils from Central Asia and the magnetic enhancement from the pedogenic take place in both the loess and the paleosols, although the progress is stronger in the latter. Translated from Quaternary Sciences, 2006, 26(6): 937–946 [译自: 第四纪研究]  相似文献   

12.
Electronic and magnetic properties of tennantite subfamily of tetrahedrite-group minerals have been studied by copper nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and SQUID magnetometry methods. The temperature dependences of copper NQR frequencies and line-width, nuclear spin-lattice relaxation rate T 1−1 and nuclear spin-echo decay rate T 2−1 in tennantite samples in the temperature range 4.2–210 K is evidence of the presence of field fluctuations caused by electronic spins hopping between copper CuS3 positions via S2 bridging atom. The analysis of copper NQR data at low temperatures points to the magnetic phase transition near 65 K. The magnetic susceptibility in the range 2–300 K shows a Curie–Weiss behavior, which is mainly determined by Fe2+ paramagnetic substituting ions.  相似文献   

13.
Internal Wave (IW) characteristics and the impact of IW on acoustic field have been studied utilizing the hourly time series of temperature and salinity data collected at a coastal site off Paradeep (north Bay of Bengal) during 24–25 October 2008. The IW characteristics, viz. period (t per ), velocity (C vel ), wavelength (L), and wave numbers (k), are found to be 2.133–34.72 h, 0.135 km h−1, 0.37–6.2 km and 2.70–0.16 cycles km−1, respectively. The semi-diurnal tidal forces are predominant than diurnal as well as at other frequencies and its contribution is about 64% towards the total potential energy (E 0 = 3.34 J m−2). Sound velocity perturbations with space and time in the presence of IW field are examined from Garrettt-Munk (GM) model. Transmission loss anomaly for optimized source-receiver configuration at the depth of 53 m and range of 9 km has been computed from acoustic modelling. The loss in the acoustic transmission is found to be 38.4 dB in the presence of low-frequency IW field.  相似文献   

14.
Thermal behaviour of γ-anhydrite (γ-CaSO4, soluble anhydrite) has been investigated in situ real-time using laboratory parallel-beam X-ray powder diffraction data. Thermal expansion has been analysed from 303 to 569 K with temperature steps of 4 K. Lattice parameters and volume were fitted with a second-order polynomial to calculate thermal expansion coefficients. Thermal expansion of γ-anhydrite is anisotropic being larger along the c axis. Within the 343–383 K thermal range, γ-anhydrite has been found to partially re-hydrate to bassanite CaSO4·0.5H2O. At 455 K the transformation γ-CaSO4 → β-CaSO4, insoluble anhydrite, starts reaching completion at 653 K.  相似文献   

15.
 The chemical bonding in the ring silicate mineral dioptase is investigated on the basis of accurate single-crystal X-ray diffraction data. A multipole model is used in the refinements. Static deformation electron density is mapped for the silicon tetrahedron, Cu-octahedron and water molecule in different sections. The silicon tetrahedron exhibits peaks resulting from σ-bonds between Si–sp3 hybrid orbitals and O–p orbitals. The excess density is located on bonds between the Si atom and bridge (in ring) O(1)-, O(1′)-oxygens and across the interior of the Si–O–Si angle. In the Jahn-Teller distorted Cu octahedron, in addition to peaks which result from single Cu–O σ-bonds, there are peaks which are due to 3d electrons. The analysis of crystal-field influence on the Cu charge distribution is made using the tetragonal D 4 d approximation for the low-symmetry (C1) Cu octahedron. The calculation of the occupancies of the 3d atomic orbitals shows that the Cu non-bonding orbitals are most populated (˜20%) and the bonding orbitals least populated (14%), as is typical for the Jahn-Teller octahedron. The effective atomic charge on the Cu atom in dioptase determined from the multipoles is +1.23e: closer to the Cu+1 than to the Cu+2 state. The charge on the Si atom has a value +1.17e, which is in the range typical for Si atoms already determined by this method. The accumulation of density on bridge oxygens and across the interior of the Si–O–Si angle may be explained by additional strain in the bond with the decrease of the Si–O–Si angle in dioptase to 132°. The same effect was found earlier in coesite. A single-crystal neutron diffraction study shows that dioptase becomes antiferromagnetic below a Néel temperature of 15.9(1) K, in contrast to the previously reported specific heat anomaly at 21 K. The magnetic propagation vector is (0, 0, 3/2) on the hexagonal triple cell or (1/2, 1/2, 1/2) in rhombohedral indices. The relation between the antiferromagnetic and the charge-density models for dioptase is discussed. The less occupied Cu d x2−y2 orbitals are responsible for the magnetic properties. These lie in the Cu–O squares, which are approximately perpendicular to c hex, but which are alternately inclined to it by a small angle. The magnetic moments of 0.59(1)μ B on the Cu ions in the same level are ordered ferromagnetically, but between ions in alternate levels the coupling is antiferromagnet. Within experimental error the magnetic moments are perpendicular to the square planes, which make an angle ±13(3)° to the triad axis. Received: 8 June 2001 / Accepted: 10 January 2002  相似文献   

16.
North-east India is seismically very active and has experienced many widelydistributed shallow, large earthquakes. Earthquake generation model for the region was studied using seismicity data [(1906–1984) prepared by National Geophysical Data Centre (NGDC), Boulder Colorado, USA]. For establishing statistical relations surface wave magnitudes (M s≥5·5) have been considered. In the region four seismogenic sources have been identified which show the occurrences of atleast three earthquakes of magnitude 5·5≤M s≤7·5 giving two repeat times. It is observed that the time interval between the two consecutive main shock depends on the preceding main shock magnitude (M p) and not on the following main shock magnitude (M f) revealing the validity of time predictable model for the region. Linear relation between logarithm of repeat time (T) and preceding main shock magnitude (M p) is established in the form of logT=cM p+a. The values ofc anda are estimated to be 0–36 and 1–23, respectively. The relation may be used for seismic hazard evaluation in the region.  相似文献   

17.
 One well-defined OH Raman band at 3651 ± 1 cm−1 and one weak feature near 3700 ± 5 cm−1 are recognized for the hydrous γ-phase of Mg2SiO4. Like the hydrous β-phase, the H2O content in the γ-phase shifts most of the corresponding silicate modes towards lower frequencies. Variations in Raman spectra of the hydrous γ-phase were investigated up to about 200 kbar at room temperature and in the range 81–873 K at atmospheric pressure. Unlike the anhydrous γ-phase, which remains intact up to at least 873 K, the hydrous γ-phase sometimes converts to a defective forsterite structure above 800 K. Although the hydrous γ-phase remains intact up to at least 800 K, Raman signals of the OH bands disappear completely above 423 K. The Raman frequency of the well-defined OH band decreases linearly with increasing temperature between 81 and 423 K. In the region of the silicate vibrations, the Raman frequencies of the two most intense bands increase nonlinearly with increasing pressure, and decrease with increasing temperature. The frequencies for all other weak bands, however, decreased linearly with increasing temperature. The latter most likely reflects the larger scatter of the data for the weak bands. Received: 27 April 2001 / Accepted: 12 September 2001  相似文献   

18.
CoGeO3 was synthesized at 1,273 and 1,448 K using ceramic sintering techniques in the monoclinic and orthorhombic modification, respectively. The two compounds were analysed by magnetic susceptibility measurements and neutron diffraction in order to study magnetic ordering and spin structures at low temperature. The monoclinic form of CoGeO3 has C2/c symmetry and orders magnetically below 36 K with a small negative paramagnetic Curie temperature θ P = −4.6 (2) K. The magnetic structure can be described with k = (1, 0, 0) in the magnetic space group C2′/c′ having a ferromagnetic spin arrangement within the chains of M1 sites, but a dominating antiferromagnetic coupling between the chains. At the M1 sites the magnetic spins are aligned within the a–c plane forming an angle of 120° with the +a-axis and they are not parallel to the spins at M2. Here spins are also ferromagnetically coupled within, but antiferromagnetically coupled between the M1/M2 site bands. The orthorhombic phase of CoGeO3 displays Pbca symmetry and transforms to an antiferromagnetically ordered state [θ P = −18.6(2) K] below 33 K. The magnetic spin structure can be described with k = (0, 0, 0) in space group Pbca′ and it is similar to the one of the C2/c phase except that it is non-collinear in nature, i.e. there are components of the magnetic moment along all three crystallographic axes. Small magneto-elastic coupling is observed in the orthorhombic phase.  相似文献   

19.
Annealing experiments on agate were performed to investigate grain growth kinetics and the effect of crystallographic anisotropy on normal grain growth of quartz. The experiments were conducted using a piston-cylinder apparatus at 700–800°C and 0.5 GPa for 0–66 h. The grain growth rate was expressed by D n −D 0 n  = kt with k = k 0 exp(−H*/RT) where D 0 is the initial grain size at t = 0, with n = 4.4 ± 0.3, and H* = 191.3 ± 11.0 kJ/mol is the activation enthalpy and logk 0  = 19.8 ± 1.4. While the grain aspect ratios are nearly constant at ~0.7 (short/long) during grain growth, the longest axis in individual grains tends to be oriented parallel to their c-axis, indicating that a primary crystal-preferred orientation of c-axis of the agate could result in the development of a weak shape-preferred orientation during grain growth.  相似文献   

20.
The electrical conduction in the mineral ilvaite was studied between ≈170 and 450 K. A natural ilvaite from Elba (Italy) was found to be semiconducting with a DC conductivity 1.8×10–3 (Ωcm)–1 at 300 K, measured parallel (∥) to the [001] direction; perpendicular (⊥) to [001] it was 1.4×10–5 (Ωcm)–1, i.e. the conductivity is highly anisotropic. The conduction is effected by a hopping charge transport between localized levels in the energy gap associated with activation energies E A =0.3–0.5 eV. It is concluded that impurities (Mg,Al,Mn) may play a decisive role in the charge hopping transport ∥ [001] that is basically governed by Fe2+-Fe3+ pairs on A-sites of the lattice as the source of electrons. Although the EA-values were similar for both measured directions, the sign of thermopower is different which points to different charge transfer mechanisms. The bulk DC conductivity σDC AC for measurements ∥ [001], obtained by extrapolation of AC data using impedance spectroscopy, could only be determined at T<300 K owing to sample–electrode interfacial effects. In contrast, the bulk σDC AC⊥ [001] showed a slight break at ≈380 K that may reflect the structural phase transition monoclinic→orthorhombic at ≈345 K. From AC conductivity measurements in the frequency range 20 Hz–1 MHz at T<300 K, a dispersive character of electronic relaxation was found, resembling that of amorphous semiconductors and of impurity conduction in crystalline semiconductors where it was ascribed to charge hopping processes of electrons between localized levels of cation pairs or clusters of limited lengths. Received: 4 August 1997 / Revised, accepted: 12 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号