首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effect of nitric oxide on the growth of marine phytoplankton   总被引:13,自引:0,他引:13  
The incubation experiments of Skeletonema costatum, Dicrateria zhanjiangensis nov. sp., and Platymonas sub-cordiformis, and those of Emiliania huxleyi were carried out in the Marine Physical Chemistry Laboratory in Ocean University of China and in the Marine Organic Geochemistry Laboratory in the University of Georgia respectively. Nitric oxide was added into the media when these marine microalgae were growing. We found the growth of these four microalgae were promoted or inhibited when nitric oxide of different concentrations was added one or two times each day during the cultivation process. The results are consistent with the influence of nitric oxide on the growth of high plants. The results show that nitric oxide may be a new factor of regulation and control for the phytoplankton growth in seawater.  相似文献   

2.
The importance of phytoplankton cell death is being increasingly recognized,however,there are still no published reports on this in Xiamen Bay.In this study,the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December2012 to December 2013,using a cell digestion assay,which is an effective method to analyze dead/living cells in complex natural phytoplankton communities.The percentages of dead cells(%DC) in the total phytoplankton in summer(16%±6%) were lower than those in winter(27%±16%).Six groups of phytoplankton(G1-G6) were categorized by flow cytometry.These phytoplankton communities with diverse seasonal variations in%DC had different responses to environmental constraints.The main factors affecting mortality were temperature and salinity,while nutrient concentration showed little influence on phytoplankton death.Additionally,our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton%DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters(such as Chl a).Moreover,the lowest mean%DC in total phytoplankton was 16%±6%at our sample site,which is in a subtropical area with high water temperatures,full solar radiation,and rich nutrients.This indicates that phytoplankton cell death is a process that cannot be ignored.In summary,phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.  相似文献   

3.
In order to estimate the biodegradation of three polycyclic aromatic hydrocarbons (PAHs) compounds, bacterial strains were isolated from marine sediments in three heavily contaminated sites (Yuandang Lake, Dongdu Port and Aquacultural zones in Maluan Bay) in Xiamen Western Sea. The results show three bacterial strains, which used pyrene as the sole carbon source, were identified as strains of Aureobacterium sp.,Arthrobacter sp., Rhodococcus sp. The PAH-degrading bacteria isolated had a strong ability to degrade phenanhrene, fluoranthene and pyrene at different degradation rates. The highest degradation rate was observed when three PAH compounds were mixed with an individual strain in the medium. The three PAHs were degraded after one week with a degradation rate of 89.94 % for phenanthrene and 93.4 % for both of fluoranthene and pyrene.In addition, after 25 days of incubation, the degradation rate was 99.98 % for phenanthrene and 99.97 % for both of fluoranthene and pyrene. Optical density was measured to estimate bacterial growth during the degradation of PAHs. Highest levels of bacterial growth were observed with a three PAH mixture in the culture, suggesting that the concentration of PAHs influenced bacterial growth and the highest levels of degradation for most series were detected after one week of incubation.  相似文献   

4.
Climate warming has a significant impact on the sea ice and ecosystem of the Arctic Ocean.Under the increasing numbers of melt ponds in Arctic sea ice,the phytoplankton communities associated with the ice system are changing.During the 7th Chinese National Arctic Research Expedition cruise in summer 2016,photosynthesis pigments and nutrients were analyzed,revealing differences in phytoplankton communities between melt ponds and open water in the central Arctic.Photosynthetic pigment analysis suggested that Fuco(5-91μg m^-3)and Diadino(4-21μg m^-3)were the main pigments in the open water.However,the melt ponds had high concentrations of Viola(7-30μg m^-3),Lut(4-59μg m^-3)and Chl b(11-38μg m^-3),suggesting that green algae dominated phytoplankton communities in the melt ponds.The significant differences in phytoplankton communities between melt ponds and open water might be due to the salinity difference.Moreover,green algae may play a more important role in Arctic sea ice ecosystems with the expected growing number of melt ponds in the central Arctic Ocean.  相似文献   

5.
Nutrient and Chlorophyll-a (Chl-a) concentrations were investigated monthly along three transects extending from a mariculturc area to open waters around the Zhangzi Island area from July to December 2009. The objective of this study is to illus- trate food availability to the bottom-sowed scallop Patinopecten yessoensis under the influences of the Yellow Sea Cold Water Mass (YSCWM), freshwater input and feedbacks of cultivated scallops. Significant thermal stratification was present in open waters from July to October, and salinity decreased in July and August in surface layers in the mariculture area. Nutrient concentrations increased with depth in both areas in summer, but were similar through water column in November and December. On average, nutrient in- creased from summer to autumn in all components except ammonia. Nutrient concentrations lower than the minimum thresholds for phytoplankton growth were present only in upper layers in summer, but stoichiometric nitrogen limitation existed in the entire inves- tigation period. Column-averaged Chl-a concentration was lower in open waters than in mariculture area in all months. It increased significantly in mariculturc area in August and October, and was less variable in open waters. Our results show that nutrients limita- tion to phytoplankton growth is present mainly in upper layer in association with stratification caused by YSCWM in summer. Freshwater input and upwelling of nutrients accumulated in YSCWM can stimulate phytoplankton production in mariculture area. Farming activities may change stoichiometric nutrient ratios but have less influence on Chl-a concentration.  相似文献   

6.
Phytoplankton blooms occurring in the Jiangdong Reservoir of Jiulong River, Fujian Province, South China, are a potential source of contamination of the drinking water of Xiamen (Amoy) City. To understand the main factors governing phytoplankton composition and succession, we sampled phytoplankton and measured environmental parameters in the reservoir, weekly or biweekly from Jan. 2010 to Feb. 2012. We identified 123 species of phytoplankton from 7 phyla and 74 genera. The major phyla were Chlorophyta, Bacillariophyta, Cryptophyta, Cyanophyta, and Dinophyta. The main trend in the succession of phytoplankton was from prevalence of Cryptophyta-Bacillariophyta communities to those of Chlorophyta-Cyanophyta. High cell concentrations of Cryptophyta, predominantly Komma caudate, Cryptomonas marssonii, and Cryptomonas erosa, were present in winter, associated with low river discharge and cold water. Bacillariophyta, primarily Cyclotella meneghiniana, Aulacoseira granulata, and Aulacoseira granulata var. angustissima, dominated in early spring, coinciding with high turbulence and low irradiance. During early summer and autumn, Chlorophyta, comprising Scenedesmus quadricauda, Dictyosphaerium ehrenbergianum, and Pandorina sp. were prevalent during conditions of warmer water temperatures and low turbulence. Cyanophyta, with dominance ofPseudanabaena mucicola, Merismopedia tenuissima and Raphidiopsis sp. increased throughout the summer, coinciding with higher water temperatures and lower nutrient concentrations. Dinophyta content was occasionally high during winter and summer. Peridiniopsis penardii (Dinophyta) bloomed during winter 2009, with a persistently high biomass recorded into early spring. Canonical correspondence analysis indicated that phytoplankton communities were influenced by river discharge, irradiance, water temperature, and nutrient concentrations.  相似文献   

7.
Nutrient enrichment experiments with nitrogen (N) and phosphorus (P) were conducted with samples from two stationsin the coastal waters of Qingdao, China, during summer to identify limiting nutrients. In late July of 2009, low P concentrations andthe maximum photochemical efficiency of photosystem II (Fv/Fm) in the initial samples together with Fv/Fm and chlorophyll a (Chl a)responses to P addition indicated P limitation at the two stations. In early August, low P levels still limited phytoplankton growth atstation A. Fv/Fm and Chl a were the highest in the NP treatments at station B, suggesting an N/P co-limitation. In mid-September,nutrient concentrations and Fv/Fm were elevated and phytoplankton communities were healthy. Greater Fv/Fm and Chl a in the treat-ments with added P than those without the addition suggested potential P limitation at station A. Lack of Fv/Fm and Chl a responsesfollowing nutrient additions indicated N and P repletion at station B. At the end of July 2010, neither N nor P was limited at station B.Additionally, Fv/Fm coupled with 24-h-long nutrient enrichment experiments can be used to detect P limitation and N/P co-limitationto natural populations. This method can be more accurate for assessing co-limitation than the use of criteria of nutrient concentrationsand ratios as indicators, and can provide more rapid results than nutrient addition bioassays using chlorophyll response as an indica-tor, when a population is potentially limited. Compared with the two conventional methods, the results based on F,/F~ can also pro-vide more detailed information about physiological states of the populations.  相似文献   

8.
The spatial and temporal variability of the phytoplankton community structure in Daya Bay, South China Sea, were identified by using HPLC-CHEMTAX analytical techniques. The highest chlorophyll a(Chl a) concentrations were observed during summer(with an average value of 0.84 μg/L) and lowest ones during winter(with an average value of 0.33 μg/L). CHEMTAX processing revealed the seasonal succession of phytoplankton species in Daya Bay. During winter, diatoms were the dominant phytoplankton species and contributed 41.5% to total Chl a. Based on Chl a concentration, the average ratio of dinofl agellates to total phytoplankton biomass substantially increased with increasing temperature and nitrogen to phosphorus(N/P) ratio, reaching 52.2% in spring. Nutrient limitation shifted from phosphorus to nitrogen during summer. Moreover, this period was associated with the predominance of diatoms, which accounted for 71.1% of Chl a. Prasinophytes and cryptophytes were the other two dominant groups and particularly dominated during winter. Cyanobacteria became an important group during summer and autumn. Canonical correspondence analysis suggested that chrysophytes, dinofl agellates, and cryptophytes were strongly associated with high nitrate concentration, ammonium, dissolved inorganic nitrogen(DIN), and N/P ratio, and were negatively associated with temperature and phosphate. Diatoms and cyanobacteria were strongly associated with temperature, phosphate, and salinity, and are negatively influenced by nitrate, ammonium, DIN, and N/P ratio. Microscopic observations and pigment HPLC information were in good agreement for diatoms and dinofl agellates in the bay. This study demonstrated the usefulness of pigment analysis in investigating the distribution of phytoplankton groups in a complex physical environment, such as Daya Bay.  相似文献   

9.
Dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) production by Scrippsiella trochoidea and Prorocentrum minimum was investigated to characterize the effects of physiological stage and salinity on DMS and DMSP pools of these two marine phytoplankton species.Axenic laboratory cultures of the two marine algae were tested for DMSP production and its conversion into DMS.The results demonstrated that both algal species could produce DMS,but the average concentration of DMS per cell in S.trochoidea(12.63 fmol/L) was about six times that in P.minimum(2.01 fmol/L).DMS and DMSP concentrations in algal cultures varied significantly at different growth stages,with high release during the late stationary growth phase and the senescent phase.DMS production induced by three salinities(22,28,34) showed that the DMS concentrations per cell in the two algal cultures increased with increasing salinity,which might result from intra-cellular DMSP up-regulation with the change of osmotic stress.Our study specifies the distinctive contributions of different physiological stages of marine phytoplankton on DMSP and DMS production,and clarifies the influence of salinity conditions on the release of DMS and DMSP.As S.trochoidea and P.minimum are harmful algal bloom species with high DMS production,they might play an additional significant role in the sulfur cycle when a red tide occurs.  相似文献   

10.
Variations in physical-chemical factors, species composition, abundance and biomass of nano-and micro-phytoplankton assemblages, as well as their responses to environmental factors, were investigated over a complete cycle (6 months) in a semi-enclosed shrimp-farming pond near Qingdao, northern China. The aim was to establish the temporal patterns of phytoplankton communities and to evaluate protists as suitable bioindicators to water quality in mariculture systems. A total of 34 taxa with nine dominant species were identified, belonging to six taxonomic groups (dinoflagellates, diatoms, cryptophyceans, chlorophyceans, euglenophyceans and chrysophyceans). A single peak of protist abundance occurred in October, mainly due to chlorophyceans, diatoms and chrysophyceans. Two biomass peaks in July and October were primarily due to dinoflagellates and diatoms. Temporal patterns of the phytoplankton communities significantly correlated with the changes in nutrients, temperature and pH, especially phosphate, either alone or in combination with NO3-N and NH3-N. Species diversity, evenness and richness indices were clearly correlated with water temperature and/or salinity, whereas the biomass/abundance ratio showed a significant correlation with NO3-N. The results suggest that phytoplankton are potentially useful bioindicators to water quality in semi-enclosed mariculture systems.  相似文献   

11.
Two cruises were conducted in January and July 1986 in the Changjiang (Yangtse River) Estuary and its adjacent East China Sea (30°45′ -32°00′N,121°00′-124°00′E). Direct epifluorescence counts of planktonic bacteria and determinations of ATP concentrations were made. Subsamples were taken for measurement of oxygen consumption rates and chlorophyll concentrations.Bacteria and ATP concentrations were higher in summer than in winter, highest in the river and the river mouth, and gradually lower offshore. The bacteria number was correlated positively with suspended matter, nitrates and oxygen consumption rates, and negatively with salinity.In winter bacteria were the main contributors of ATP and the main consumers of dissolved oxygen in the whole studied area. In summer two maxima of ATP were found along the salinity gradient. The first one which coincided with the peak of turbidity near the river mouth was attributed to bacte -ria, and the second which occurred in the waters with a salinity range be  相似文献   

12.
The effects of changing salinity and nitrogen limitation on dimethylsulfoniopropionate(DMSP) and dimethylsulfide(DMS) concentrations were investigated in batch cultures of coastal diatom Skeletonema costatum,an ecologically important species.Changes in salinity from 20-32 caused no measurable variation in cell growth or culture yield,but increased intracellular DMSP per cell by 30%.Nitrogen limitation caused up to a two-fold increase in total DMSP per cell and up to a three-fold increase in DMS per cell.These changes in DMSP and DMS per cell in the Skeletonema costatum cultures with nitrogen limitation and changing salinity were primarily attributed to the physiological functions of DMSP as an osmolyte and an antioxidant.The data obtained in this study indicated that nitrogen limitation and salinity may play an important role in climate feedback mechanisms involving biologically derived DMS.  相似文献   

13.
The phytoplankton reproduction capacity (PRC), as a new concept regarding chlorophyll-a and primary production (PP) is described. PRC is different from PP, carbon assimilation number (CAN) or photosynthetic rate ( P^B ) . PRC quantifies phytoplankton growth with a special consideration of the effect of seawater temperature. Observation data in Jiaozhou Bay, Qingdao, China, collected from May 1991 to February 1994 were used to analyze the horizontal distribution and seasonal variation of the PRC in Jiaozhou Bay in order to determine the characteristics, dynamic cycles and trends of phytoplankton growth in Jiaozhou Bay; and to develop a corresponding dynamic model of seawater temperature vs. PRC. Simulation curves showed that seawater temperature has a dual function of limiting and enhancing PRC. PRC‘s periodicity and fluctuation are similar to those of the seawater temperature. Nutrient silicon in Jiaozhou Bay satisfies phytoplankton growth from June 7 to November 3. When nutrients N, P and Si satisfy the phytoplankton growth and solar irradiation is sufficient, the PRC would reflect the influence of seawater temperature on phytoplankton growth. Moreover, the result quantitatively explains the scenario of one-peak or two-peak phytoplankton reproduction in Jiaozhou Bay, and also quantitatively elucidates the internal mechanism of the one- or two-peak phytoplankton reproduction in the global marine areas.  相似文献   

14.
River discharge can deliver nutrients to the coastal zone and change the hydrologic properties of the water column. Soon after a flash flood from the Yalu River (Northeast China) in August 2010, we investigated the salinity and nutrient concentrations, as well as other environmental conditions in the Changshan Archipelago area, located approximately 100 km west of the river mouth in the northern Yellow Sea. Diluted water was mainly observed in the upper layers shallower than 15 m, with surface salinity between 18.13 and 30.44 in the eastern study area and between 28.16 and 29.72 in the western area. Surface salinity showed a significant negative correlation with concentrations of dissolved nutrients (P < 0.05), but not with that of Chlorophyll-a (Chl-a), dissolved oxygen (DO), particulate materials or pH. The average concentrations of nitrite, nitrate, and silicic acid decreased from the surface layer to bottom layer and were significantly higher in the east area than in the west area (P < 0.05). In contrast, average ammonium and phosphate concentrations were highest in the bottom layer of both areas, with no significant spatial differences. DO varied between 6.06 and 8.25 mg L-1 in the surface layer, and was significantly higher in the eastern area than in the western area in the surface and middle layers. Chl-a concentration was constantly below 4.09 μg L-1. Our work demonstrated the strong influences of Yalu River on proportions of various nutrient components in the Changshan Archipelago area. Silicic acid and total inorganic nitrogen levels were significantly elevated comparing to phosphate in the eastern area. Such changes can potentially induce phosphate limit to phytoplankton growth.  相似文献   

15.
After decades of low year classes,the stock of Japanese sardine(Sardinops melanostictus)has begun to recover since the mid-2000s.The hatch dates and otolith growth rates of age-0 juvenile sardine,which were collected in the subarctic Oyashio waters in autumn 2018,were determined from an otolith microstructure analysis.The sardines were hatched from late January to late April,while mostly in February and March.The otolith growth rate increased continuously up to 60 d after hatching and thereafter de-creased.The revealed growth rate in a crucial growth period is faster than that reported for juvenile sardines collected in the 1990s,which is coincided with the recent recovery trend of the sardine stock.Two groups with different hatch dates,growth histories,and migration routes were identified using unsupervised random forest clustering analysis.They were considered inshore and offshore migration individuals in accordance with recent researches.In the offshore group,a high proportion of sardine juveniles hatched late and grew faster in the Kuroshio-Oyashio transitional waters,a finding consistent with the hypothesis of growth-rate-dependent re-cruitment.This finding on the population composition and growth rate of juvenile sardine in the Oyashio waters can be a basis for an improved prediction of their survival and provides us with valuable information on the recruitment processes of this stock during the period of stock recovery.  相似文献   

16.
The increasing riverine pollutants have resulted in nutrient enrichment and deterioration of water quality in the coastal water of Guangxi Province, China. However, the quantitative relationship between nutrient loads and water quality responses, which is crucial for developing eutrophication control strategies, is not well studied. In this study, the riverine fluxes of nutrients were quan- tified and integrated with nutrient cycling and phytoplankton dynamics by using box models for Guangxi coastal bays. The model concepts and biogeochemical equations were the same; while most model parameters were specific for each bay. The parameters were calibrated with seasonal observations during 2006--2007, and validated with yearly averaged measurements in 2009. The gen-eral features of nutrient and phytoplankton dynamics were reproduced, and the models were proved feasible under a wide range of bay conditions. Dissolved inorganic nitrogen was depleted during the spring algal bloom in Zhenzhu Bay and Fangcheng Bay with relatively less nutrient inputs. Phosphorus concentration was high in spring, which decreased then due to continuous phytoplankton consumption. Chlorophyll-a concentration reached its annual maximum in summer, but was the minimum in winter. Eutrophication was characterized by both an increase in nutrient concentrations and phytoplankton biomass in Lianzhou Bay. Either about 80% re-duction of nitrogen or 70% reduction of phosphorus was required to control the algal bloom in Lianzhou Bay. Defects of the models were discussed and suggestions to the environmental protection of Guangxi coastal bays were proposed.  相似文献   

17.
Carbon biomass,carbon-to-chlorophyll a ratio(C:Chl a),and the growth rate of phytoplankton cells were studied during four seasonal cruises in 2017 and 2018 in Jiaozhou B ay,China.Water samples were collected from 12 stations,and phytoplankton carbon biomass(phyto-C) was estimated from microscopemeasured cell volumes.The phyto-C ranged from 5.05 to 78.52 μg C/L in the bay,and it constituted a mean of 38.16% of the total particulate organic carbon in the bay.High phyto-C values appeared mostly in the northern or northeastern bay.Diatom carbon was predominant during all four cruises.Dinoflagellate carbon contributed much less(30%) to the total phyto-C,and high values appeared often in the outer bay.The C:Chl a of phytoplankton cells varied from 11.50 to 61.45(mean 3 1.66),and high values appeared in the outer bay during all four seasons.The phyto-C was also used to calculate the intrinsic growth rates of phytoplankton cells in the bay,and phytoplankton growth rates ranged from 0.56 to 1.96/d;the rate was highest in summer(mean 1.79/d),followed by that in fall(mean 1.24/d) and spring(mean 1.17/d),and the rate was lowest in winter(mean 0.77/d).Temperature and silicate concentration were found to be the determining factors of phytoplankton growth rates in the bay.To our knowledge,this study is the first report on phytoplankton carbon biomass and C:Chl a based on water samples in Jiaozhou B ay,and it will provide useful information for studies on carbon-based food web calculations and carbon-based ecosystem models in the bay.  相似文献   

18.
The increasing riverine pollutants have resulted in nutrient enrichment and deterioration of water quality in the coastal water of Guangxi Province, China. However, the quantitative relationship between nutrient loads and water quality responses, which is crucial for developing eutrophication control strategies, is not well studied. In this study, the riverine fluxes of nutrients were quantified and integrated with nutrient cycling and phytoplankton dynamics by using box models for Guangxi coastal bays. The model concepts and biogeochemical equations were the same; while most model parameters were specific for each bay. The parameters were calibrated with seasonal observations during 2006–2007, and validated with yearly averaged measurements in 2009. The general features of nutrient and phytoplankton dynamics were reproduced, and the models were proved feasible under a wide range of bay conditions. Dissolved inorganic nitrogen was depleted during the spring algal bloom in Zhenzhu Bay and Fangcheng Bay with relatively less nutrient inputs. Phosphorus concentration was high in spring, which decreased then due to continuous phytoplankton consumption. Chlorophyll-a concentration reached its annual maximum in summer, but was the minimum in winter. Eutrophication was characterized by both an increase in nutrient concentrations and phytoplankton biomass in Lianzhou Bay. Either about 80% reduction of nitrogen or 70% reduction of phosphorus was required to control the algal bloom in Lianzhou Bay. Defects of the models were discussed and suggestions to the environmental protection of Guangxi coastal bays were proposed.  相似文献   

19.
We evaluated the effects of ultraviolet-B(UV-B) radiation and different light conditions on the repair of UV-B-induced damage in carpospores of C hondrus ocellatus Holm(Rhodophyta) in laboratory experiments. Carpospores were treated daily with different doses of UV-B radiation for 48 days,when vertical branches had formed in all treatments; after each daily treatment,the carpospores were subjected to photosynthetically active radiation(PAR),darkness,red light,or blue light during a 2-h repair stage. Carpospore diameters were measured every 4 days. We measured the growth and cellular contents of cyclobutane pyrimidine dimers(CPDs),chlorophyll a,phycoerythrin,and UV-B-absorbing mycosporine-like amino acids(MAAs) in carpospores on Day 48. Low doses of UV-B radiation(36 and 72 J/m 2) accelerated the growth of C. ocellatus. However,as the amount of UV-B radiation increased,the growth rate decreased and morphological changes occurred. UV-B radiation significant damaged DNA and photosynthetic pigments and induced three kind of MAAs,palythine,asterina-330,and shinorine. PAR conditions were best for repairing UV-B-induced damage. Darkness promoted the activity of the DNA darkrepair mechanism. Red light enhanced phycoerythrin synthesis but inhibited light repair of DNA. Although blue light,increased the activity of DNA photolyase,greatly improving remediation efficiency,the growth and development of C. ocellatus carpospores were slower than in other light treatments.  相似文献   

20.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary.The average numbers of Synechococcus spp.(Syn) and picoeukaryotes (Euk) were (2.7 ±5.1)×l03 and (1.1±1.4)×l03 cells mL-1,respectively.Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0× 10^3 cells mL-1.Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk.The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean.The response of different picophytoplankton groups to environmental variables was different.Water temperature was more important in its control over Euk than over Syn,while nutrients were more important in their influence over Syn than over Euk.Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient (i.e.,freshwater zone with 0-5 range,fresh and saline water mixing zone with 5-20 range,and high-salinity brackish water zone with 20-32 range),where three different phytoplankton communities were discovered,suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号