首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sanyal  Joy  Lu  X. X. 《Natural Hazards》2004,33(2):283-301
The conventional means to record hydrological parameters of aflood often fail to record an extreme event. Remote sensingtechnology along with geographic information system (GIS)has become the key tool for flood monitoring in recent years.Development in this field has evolved from optical to radarremote sensing, which has provided all weather capabilitycompared to the optical sensors for the purpose of flood mapping.The central focus in this field revolves around delineation of floodzones and preparation of flood hazard maps for the vulnerable areas.In this exercise flood depth is considered crucial for flood hazardmapping and a digital elevation model (DEM) is considered to bethe most effective means to estimate flood depth from remotelysensed or hydrological data. In a flat terrain accuracy of floodestimation depends primarily on the resolution of the DEM. Riverflooding in the developing countries of monsoon Asia is very acutebecause of their heavy dependence on agriculture but any floodestimation or hazard mapping attempt in this region is handicappedby poor availability of high resolution DEMs. This paper presents areview of application of remote sensing and GIS in flood managementwith particular focus on the developing countries of Asia.  相似文献   

2.
Many developing countries are very vulnerable to flood risk since they are located in climatic zones characterised by extreme precipitation events, such as cyclones and heavy monsoon rainfall. Adequate flood mitigation requires a routing mechanism that can predict the dynamics of flood waves as they travel from source to flood-prone areas, and thus allow for early warning and adequate flood defences. A number of cutting edge hydrodynamic models have been developed in industrialised countries that can predict the advance of flood waves efficiently. These models are not readily applicable to flood prediction in developing countries in Asia, Africa and Latin America, however, due to lack of data, particularly terrain and hydrological data. This paper explores the adaptations and adjustments that are essential to employ hydrodynamic models like LISFLOOD-FP to route very high-magnitude floods by utilising freely available Shuttle Radar Topographic Mission digital elevation model, available topographical maps and sparse network of river gauging stations. A 110 km reach of the lower Damodar River in eastern India was taken as the study area since it suffers from chronic floods caused by water release from upstream dams during intense monsoon storm events. The uncertainty in model outputs, which is likely to increase with coarse data inputs, was quantified in a generalised likelihood uncertainty estimation framework to demonstrate the level of confidence that one can have on such flood routing approaches. Validation results with an extreme flood event of 2009 reveal an encouraging index of agreement of 0.77 with observed records, while most of the observed time series records of a 2007 major flood were found to be within 95 % upper and lower uncertainty bounds of the modelled outcomes.  相似文献   

3.
The frequency in occurrence and severity of floods has increased globally. However, many regions around the globe, especially in developing countries, lack the necessary field monitoring data to characterize flood hazard risk. This paper puts forward methodology for developing flood hazard maps that define flood hazard risk, using a remote sensing and GIS-based flood hazard index (FHI), for the Nyamwamba watershed in western Uganda. The FHI was compiled using analytical hierarchy process and considered slope, flow accumulation, drainage network density, distance from drainage channel, geology, land use/cover and rainfall intensity as the flood causative factors. These factors were derived from Landsat, SRTM and PERSIANN remote sensing data products, except for geology that requires field data. The resultant composite FHI yielded a flood hazard map pointing out that over 11 and 18% of the study area was very highly and highly susceptible to flooding, respectively, while the remaining area ranged from medium to very low risk. The resulting flood hazard map was further verified using inundation area of a historical flood event in the study area. The proposed methodology was effective in producing a flood hazard map at the watershed local scale, in a data-scarce region, useful in devising flood mitigation measures.  相似文献   

4.
Municipal flood hazard mapping: the case of British Columbia,Canada   总被引:1,自引:0,他引:1  
Historical responses to flood hazards have stimulated development in hazardous areas. Scholars recommend an alternative approach to reducing flood losses that combines flood hazard mapping with land use planning to identify and direct development away from flood-prone areas. Creating flood hazard maps to inform municipal land use planning is an expensive and complex process that can require resources not always available at the municipal government level. Senior levels of government in some countries have addressed deficiencies in municipal capacity by assuming an active role in producing municipal flood hazard maps. In other countries, however, senior governments do not contribute to municipal flood hazard mapping. Despite a large body of research on the importance of municipal land use planning for addressing flood hazards, little is known about the extent of flood hazard information that is available to municipalities that do not receive outside assistance from senior governments for flood hazard mapping. We assess the status of flood hazard maps in British Columbia, where municipalities do not receive outside assistance in creating the maps. Our analysis shows that these maps are generally outdated and/or lacking a variety of features that are critical for supporting effective land use planning. We recommend that senior levels of government play an active role in providing municipalities with (1) detailed and current information regarding flood hazards in their jurisdiction and (2) compelling incentives to utilize this information.  相似文献   

5.
Flood risk assessment using regional regression analysis   总被引:2,自引:0,他引:2  
This study aimed to create a flood risk map for ungauged regions, which have limited flood damage data and other relevant data. The fact that there is a shortage of data that are critical for the establishment of a flood assessment and mitigation plan is not surprising even in developed countries like South Korea. To address this problem, the regional regression concept in statistical hydrology was introduced to the flood risk assessment field in this study, and it was framed with a series of two regression functions: flood damage and regional coefficients. As the second regression function utilizes the local socioeconomic variables, the resulting flood risk map can reflect the spatial characteristics well. The proposed methodology was applied to create flood risk maps for the three metropolitan areas in South Korea. The comparison of the proposed methodology with the existing methods revealed that only the proposed methodology can produce a statistically meaningful flood risk map based on a recent major flood in 2001.  相似文献   

6.
Flood basalts represent large outpourings of lavas which often cover, and interact with, sedimentary basins. For this reason areas with significant flood basalt cover are often targets for hydrocarbon exploration. Problems exist, however, when trying to image sediments and structures in offshore regions covered by basalts. Here we present preliminary 3-D models of the Etendeka flood basalt province from NW Namibia, which can act as an aid in understanding the internal and external architecture of the flood basalt cover. Satellite images, digital elevation models, measured geological logs, sections and maps, are used to create the geological model. Models are presented in 2 parts; 1) models created using topography with images such as Land Sat and geological maps draped over them, and 2) a 3-D model of key lava and sediment surfaces in the basin as defined by measured geological sections. Initial results show a palaeo-volcanic feature early in the flood basalt history which is onlapped by later Iavas. The modelling also allows a simple correction for post emplacement subsidence by assuming an original sub horizontal position for the first basin wide silicic flow unit.  相似文献   

7.
Flood inundation maps are dependent on the topographic and geomorphologic features of a wadi (drainage basin) in arid regions, which are most susceptible for potential flash flood occurrences, such as in the southwestern part of the Kingdom of Saudi Arabia. It is not possible to control the potential flood hazards by using only technological instruments that forewarn the occurrences or imminence. Additionally, it would be better to prepare flood risk maps so as to delineate the risky areas to educate the administrators and local settlers. The availability of these maps is the key requirement for any urban development that entails land use allocation, identification of dam, tunnel, highway, bridge sites, and infrastructure locations for sustainable future. This paper suggests the necessary steps in flood inundation map preparation after determining the possible flood discharge. For this purpose, a set of critical cross-sections along the possible flood plain are taken in the field with surveying methods and measurements. The calculation of the average flow velocity in each section is calculated according to the cross-section geometric, hydraulic, and material properties. Synthetic rating curves (SRC) are prepared for each cross section, which are very useful especially in arid and semi-arid regions where there are no perennial surface water flows for natural rating curve measurements. All the SRCs appear in the form of power function which relates the flow depth to discharge in a given cross section. It is then possible to calculate the flood depth in the cross section through its SRC. Depending on the cross-section shape, the flood width can be calculated. The connection of a series of widths on a scaled topographic map delineates the flood inundation area. If digital elevation map (DEM) is available, then the SRCs can be integrated with these maps and the flood inundation delineation can be achieved automatically. Since DEMs are not available, the topographic maps are used for this purpose in order to delineate flood inundation areas within wadis Hali and Yiba from the southwestern Kingdom of Saudi Arabia.  相似文献   

8.
An interdisciplinary approach is necessary for flood risk assessment. Questions are often raised about which factors should be considered important in assessing the flood risk in an area and how to quantify these factors. This article defines and quantitatively evaluates the flood risk factors that would affect the Day River Flood Diversion Area in the context of integrated flood management in the Red River Delta, Vietnam. Expert analysis, in conjunction with field survey and Analytical Hierarchy Process (AHP), is applied to define and quantify parameters (indicators, subcomponents, and components) that contribute to flood risk. Flood duration is found to be the most prominent indicator in determining flood hazard. Residential buildings, population, and pollution are other fairly significant indicators contributing to flood vulnerability from the economic, social, and environmental perspectives, respectively. The study results will be useful in developing comprehensive flood risk maps for policy-makers and responsible authorities. Besides, local residents will also be able to implement suitable measures for reducing flood risk in the study area.  相似文献   

9.
Mangukiya  Nikunj K.  Sharma  Ashutosh 《Natural Hazards》2022,113(2):1285-1304
Natural Hazards - Floods have a significant economic, social, and environmental impact in developing countries like India. Settlements in flood hazard zones increase flood risk due to a lack of...  相似文献   

10.
Lixin  Yi  Ke  Cheng  Xiaoying  Cao  Yueling  Sun  Xiaoqing  Cheng  Ye  He 《Natural Hazards》2017,85(2):1223-1248

Flood management consists many aspects such as hazard assessment, vulnerability assessment, exposure assessment, risk assessment, early warning system, damage assessment as well as risk mitigation planning. Conventional flood management are depending on the ground based monitoring of rainfall and river discharge. Many parts of the world are not covered by these sensor networks in one hand and these ground based systems are costly. Most of the tropical countries have high flood risk and low financial and institutional capacity to afford ground based system. While conventional flood management is time and cost intensive, spaceborne remote sensing provides timely and low-cost data in comparison to field observation, and is the obvious choice for most developing countries affected by flooding. Many aspects of flood management are being aided with the advancement of remote sensing technology. More precise and near real time flood detection, lead time in flood early warning system, accurate and advance inputs of hydrological models are now blessed by space technology. Many methods and approaches have been developed to overcome the constrains in the application of spaceborne remote sensing in flood management. Application of satellite remote sensing in flood hazard assessment is well documented, however, the application of space technology in other aspects of the flood management is also promising. Therefore, this review paper focuses on the applicability of spaceborne remote sensing and in most of the aspects in flood management.

  相似文献   

11.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

12.
Loss of life and property caused by landslides triggered by extreme rainfall events demonstrates the need for landslide-hazard assessment in developing countries where recovery from such events often exceeds the country's resources. Mapping landslide hazards in developing countries where the need for landslide-hazard mitigation is great but the resources are few is a challenging, but not intractable problem. The minimum requirements for constructing a physically based landslide-hazard map from a landslide-triggering storm, using the simple methods we discuss, are: (1) an accurate mapped landslide inventory, (2) a slope map derived from a digital elevation model (DEM) or topographic map, and (3) material strength properties of the slopes involved. Provided that the landslide distribution from a triggering event can be documented and mapped, it is often possible to glean enough topographic and geologic information from existing databases to produce a reliable map that depicts landslide hazards from an extreme event. Most areas of the world have enough topographic information to provide digital elevation models from which to construct slope maps. In the likely event that engineering properties of slope materials are not available, reasonable estimates can be made with detailed field examination by engineering geologists or geotechnical engineers. Resulting landslide hazard maps can be used as tools to guide relocation and redevelopment, or, more likely, temporary relocation efforts during severe storm events such as hurricanes/typhoons to minimize loss of life and property. We illustrate these methods in two case studies of lethal landslides in developing countries: Tegucigalpa, Honduras (during Hurricane Mitch in 1998) and the Chuuk Islands, Micronesia (during Typhoon Chata'an in 2002).  相似文献   

13.
The study proposes an original methodology for producing probability-weighted hazard maps based on an ensemble of numerical simulations. These maps enable one to compare different strategies for flood risk management. The methodology was applied over a 270-km2 flood-prone area close to the left levee system of a 28-km reach of the river Reno (Northern Central Italy). This reach is characterised by the presence of a weir that allows controlled flooding of a large flood-prone area during major events. The proposed probability-weighted hazard maps can be used to evaluate how a structural measure such as the mentioned weir alters the spatial variability of flood hazard in the study area. This article shows an application by constructing two different flood hazard maps: a first one which neglects the presence of the weir using a regular levee system instead, and a second one that reflects the actual geometry with the weir. Flood hazard maps were generated by combining the results of several inundation scenarios, simulated by coupling 1D- and 2D-hydrodynamic models.  相似文献   

14.
Flooding is widely believed to be the most common natural disaster in Europe, and the changing climatic conditions are estimated to increase its adverse impacts. Effective flood strategies require thorough consideration of the factors underlying the flood generation mechanism and a widened display of mitigation priorities for spatially exhaustive assessments. Flood potential maps generated herein for indicating potential flood areas prove to be among powerful tools for comprehensive flood assessments. In the presented study, a countrywide characterization is achieved in this context by analyzing catchment units, which constitute the river basin systems in Turkey, through a series of spatial indices adapted from different factors effective in flood generation. The study aims to contribute to depicting priorities for in-depth flood assessments and to the re-orientation of subsequent control measures. The flood potential maps obtained for river catchments and designating individual locations with comparably higher flood potentials are expected to set light to the selection of case studies for local flood research in Turkey while contributing to decision making and policy implementation on flood control at the macroscale.  相似文献   

15.
This paper illustrates the development of flood hazard and risk maps in Greater Dhaka of Bangladesh using geoinformatics. Multi-temporal RADARSAT SAR and GIS data were employed to delineate flood hazard and risk areas for the 1998 historical flood. Flood-affected frequency and flood depth were estimated from multi-date SAR data and considered as hydrologic parameters for the evaluation of flood hazard. Using land-cover, gemorphic units and elevation data as thematic components, flood hazard maps were created by considering the interactive effect of flood frequency and flood water depth concurrently. Analysis revealed that a major portion of Greater Dhaka was exposed to high to very high hazard zones while a smaller portion (2.72%) was free from the potential flood hazard. Flood risk map according to administrative division showed that 75.35% of Greater Dhaka was within medium to very high risk areas of which 53.39% of areas are believed to be fully urbanized by the year 2010.  相似文献   

16.
Due to increasing flood severities and frequencies, studies on coastal vulnerability assessment are of increasing concern. Evaluation of flood inundation depth and extent is the first issue in flood vulnerability analysis. This study has proposed a practical framework for reliable coastal floodplain delineation considering both inland and coastal flooding. New York City (NYC) has been considered as the case study because of its vulnerability to storm surge-induced hazards. For floodplain delineation, a distributed hydrologic model is used. In the proposed method, the severities of combined inland and coastal floods for different recurrence intervals are determined. Through analyzing past storms in the study region, a referenced (base) configuration of rainfall and storm surge is selected to be used for defining flood scenarios with different return periods. The inundated areas are determined under different flooding scenarios. The inundation maps of 2012 superstorm Sandy in NYC is simulated and compared with the FEMA revised maps which shows a close agreement. This methodology could be of significant value to the planners and engineers working on the preparedness of coastal urban communities against storms by providing a platform for updating inundation maps as new events are observed and new information becomes available.  相似文献   

17.

Frequent flood is a concern for most of the coastal regions of India. The importance of flood maps in governing strategies for flood risk management is of prime importance. Flood inundation maps are considered dependable output generated from simulation results from hydraulic models in evaluating flood risks. In the present work, a continuous hydrologic-hydraulic model has been implemented for mapping the flood, caused by the Baitarani River of Odisha, India. A rainfall time-series data were fed into the hydrologic model and the runoff generated from the model was given as an input into the hydraulic model. The study was performed using the HEC-HMS model and the FLO-2D model to map the extent of flooding in the area. Shuttle Radar Topographic Mission (SRTM) 90 m Digital Elevation Model (DEM) data, Land use/Land cover map (LULC), soil texture data of the basin area were used to compute the topographic and hydraulic parameters. Flood inundation was simulated using the FLO-2D model and based on the flow depth, hazard zones were specified using the MAPPER tool of the hydraulic model. Bhadrak District was found to be the most hazard-prone district affected by the flood of the Baitarani River. The result of the study exhibited the hydraulic model as a utile tool for generating inundation maps. An approach for assessing the risk of flooding and proper management could help in mitigating the flood. The automated procedure for mapping and the details of the study can be used for planning flood disaster preparedness in the worst affected area.

  相似文献   

18.
Jian  Wei  Li  Shanshan  Lai  Chengguang  Wang  Zhaoli  Cheng  Xiangju  Lo  Edmond Yat-Man  Pan  Tso-Chien 《Natural Hazards》2021,105(2):1691-1719
Natural Hazards - Rapid urbanisation and economic growth in developing Asian countries have exacerbated their exposure to flood hazards, particularly evident in low-lying urban cities that are...  相似文献   

19.
Flood risk assessment is usually performed by application of sophisticated mathematical models of river flow. However, there are cases when it is required to assess the risk in the lack of data conditions or a limited time available. In such cases, it is advisable to use some simplifications, which provide reliable results faster. This study proposes a hybrid approach to the flood risk assessment combining quantitative and qualitative indicators. The article describes various methods to assess the flood risk, such as likelihood of flooding, magnitude of the flood, average annual damage, maximum damage and expectation of damage. The authors examined special cases of calculation of the mathematical expectation of harm and zoning in the corresponding indicators. This approach is designed for the conditions of the Russian Federation, but it can be adapted for other regions. It is based on the use of two types of risk maps. The first type of maps is intended to define the mathematical expectation of damage zones for reference building with possibility of risk calculation for other buildings using multiple factors. The second type of maps is designed for the purposes of land use regulation for floodplains based on a priori statistical estimates of flood risk.  相似文献   

20.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号