首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.  相似文献   

2.
Almandine, although decomposing in the presence of metallic iron into the anhydrous subsolidus assemblage fayalite + ferrocordierite + hercynite solid solution at low pressures, melts incongruently to hercynitess + quartz + liquid at 10 kb. At pressures between about 12 and 20 kb the products of incongruent melting are hercynitess + liquid only, and at still higher pressures almandine melts congruently. For the intermediate pressures between 2 and 10 kb not investigated a sequence of probable breakdown and melting relations involving the phases ferrocordierite, fayalite, hercynitess, quartz, and liquid is derived through Schreinemakers' analyses.The lower temperature stability limit of almandine in the presence of water at low oxygen fugacities and pressures of 15 to 20 kb lies between 550° and 600° C as at low pressures. It is marked, however, by the breakdown to a hydrous assemblage involving chloritoid and the new phase aluminous deerite. Since the anhydrous melting at these pressures occurs between 1300° and 1400° C, the thermal stability range of almandine increases drastically with pressure. Its upper breakdown limit shows in principle a similar behavior as those of other garnet end members.  相似文献   

3.
Spinelloid phases have been observed and characterized by powder X-ray diffraction and high-resolution electron microscopy. Mg3Ga2GeO3(III), with a narrow composition range of approximately 3 mole percent Mg2GeO4, is stable at atmospheric pressure up to about 1,420° C, and is isostructural with β-Mg2SiO4 and the spinelloid Phase III of the NiAl2O4-Ni2SiO4 system. This represents the first occurrence of a β-phase structure stable at 1 atm pressure. Above 1,420° C (1 atm) Mg3Ga2GeO8 (III) decomposes reversibly into a mixture of spinel and olivine. At high pressure (around 30 kbar at 1,100° C) it transforms into another spinelloid phase, Mg3Ga2GeO8 (IV), isostructural with Phase IV of the NiAl2O4-Ni2SiO4 system. In terms of crystal structures and phase relations therefore there exists a close analogy between the magnesium gallo-germanate and nickel alumino-silicate systems, the former being a lower-pressure analogue of the latter. Our investigation of a number of other pseudo-binary spinel-olivine oxide systems suggests that the formation of spinelloid phases can be associated with the inverse character of the spinel component.  相似文献   

4.
Phase equilibrium data have been collected for isobaricallyunivariant melting of simplified Iherzolite compositions inthe system CaO-MgO-Al2O3 SiO2-Na2O over a pressure range of7–35 kbar. These data permit the melting behavior of awide variety of model lherzolite compositions to be determinedquantitatively by algebraic methods. Two P-T univariant meltingreactions, corresponding to plagioclase to spinel lherzoliteand spinel to garnet lherzolite, are identified as peritectic-typetransitions and have positive Clapeyron slopes. The univariantcurves move to higher pressures and temperatures with increasingNa2O in the liquid. The effect of the univariant curves on meltingis to produce low-temperature regions and isobarically invariantmelting intervals along lherzolite solidi. In the plagioclaselherzolite stability field, melting of four-phase model lherzoliteis pseudo-invariant, occurring over small temperature intervals(5C) and producing liquids that are quartz tholeiites at <8kbar and olivine tholeiites at >8 kbar. Calculated equilibriumconstants for plagioclase-liquid equilibria show both temperatureand pressure dependence. Plagioclase with anorthite content(AN) >90 mol%, as observed in some oceanic basalts, can crystallizefrom liquids with <1% Na2O. Melting of spinel lherzoliteis not pseudo-invariant but occurs over large temperature intervals(15–60 C), producing a wide range in liquid compositions,from alkali basalts and alkali picrites at low to moderate degreesof melting (<1–10%) to olivine tholeiites and picritesat higher degrees of melting (>10%). On the basis of limiteddata in the garnet Iherzolite field, melts from garnet lherzoliteare more silica rich for a given degree of melting than meltsfrom spinel lherzolite, and liquid compositions trend towardenstatite with increase in pressure. Source fertility (especiallyNa2O content) has a strong control on the temperature of meltingand liquid composition. Less fertile sources produce smalleramounts of liquids richer in normative silica. For certain bulkcompositions (high SiO2 and low Al2O3), spinel is not a stablephase along the lherzolite solidus.  相似文献   

5.
The enthalpies of solution in molten 2PbO · B2O3 of phases synthesized at one atmosphere in the system MgGa2O4-Mg2GeO4 have been measured. A spinel solid solution, which is stable at 1400 °C from the MgGa2O4 end-member to 27 mole percent Mg2GeO4, shows endothermic heats of mixing of up to 10 kJ/mole at the solubility limit. The spinelloid phase, Mg3Ga2GeO8, is energetically less stable than a mixture of terminal spinel solid solutions (0.73 MgGa2O4·0.27 Mg2GeO4(sp)+Mg2GeO4(sp)), by 3.63±3.64 kJ/mole. This indicates that the spinelloid is a high-entropy phase.The volume of the spinel solid solution, MgGa2O4-Mg2GeO4, shows a positive deviation from Vegard's Law. Modeling of the cation distribution in the solid solution indicates that this V is due to a change in the spinel type from inverse towards normal as the Mg2GeO4 content increases.  相似文献   

6.
Forty-six reversed determinations of the Al2O3content of enstatite in equilibrium with garnet were made in the P/T range 15–40 kbar/900–1,600° C in the MgO-Al2O3-SiO2 system. Starting materials were mixtures of synthetic pyrope+Al-free enstatite and pyrope+enstatite (5–12% Al2O3). Al2O3 contents in reversal run pairs closely approached common values from both the high- and low-Al sides. Most experiments were done in a piston-cylinder device using a NaCl medium; some runs at very high temperatures were made in pyrex/NaCl or pyrex/talc assemblies. The measured enstatite compositions, expressed as mole fractions of Mg2(MgAl)(AlSi3)O12(X Opy En ) were fitted by a Monte-Carlo method to the equilibrium condition: $$\begin{gathered} \Delta H_{970}^0 - 970\Delta S_{970}^0 \hfill \\ + \mathop \smallint \limits_1^P \Delta V_{970}^0 dP - \mathop \smallint \limits_{970}^T \Delta S_T^0 dT + RT\ln X_{Opy}^{En} = 0 \hfill \\ \end{gathered}$$ where the best fit parameters of ΔH, ΔS and ΔV (1 bar, 970 K) for the reaction pyrope=opy are 2,040 cal/mol, 2.12 eu and 9.55 cc/mol. In addition to the determination of Al2O3 contents of enstatite, the univariant reaction pyrope+forsterite=enstatite+spinel was reversibly located in the range 1,100–1,400°C. A “best-fit” line passes through 22, 22.5 and 25 kbar at 1,040, 1,255 and 1,415°C, respectively. Our results for the univariant reaction are in agreement with previous studies of MacGregor (1974) and Haselton (1979). However, comparison of the experimentally determined curve with thermochemical calculations suggests that there may be a small error in the tabulated ΔH f(970,1) 0 value for enstatite. A value of?8.32 rather than?8.81 kcal/mole (Charlu et al. 1975) is consistent with the present data. Application of garnet-enstatite-spinel-forsterite equilibria to natural materials is fraught with difficulties. The effects of nonternary components are poorly understood, and the low solubilities of Al2O3 in enstatite under most geologically reasonable conditions make barometric or thermometric calculations highly sensitive. More detailed studies, including reversed determinations in low-friction assemblies, are sorely needed before the effects of important diluents such as Fe, Ca and Cr can be fully understood.  相似文献   

7.
Subsolidus phase relations in the system CaO-Al2O3-SiO2 (CAS) were experimentally determined with tight reversals of several univariant curves and with 14 equilibration experiments containing the assemblage pyroxene + anorthite, where pyroxene is a binary solid solution of Ca-Tschermak (CaTs-CaAl2SiO6) and Ca-Eskola (CaEs-Ca0.5AlSi2O6) endmembers.Reversals were obtained on the following reactions (bar, °C): 3An = Gr + 2Ky + Q (P = 22T ? 700), 3An + Cor = Gr + 3Ky (P = 21.8T ? 950), 3CaTs= Gr + 2Cor(P = 55T ? 53900), and 6CaTs(1 ? x)CaEsx = 2(1 ? 2x)Gr + 4(1 ? 2x)Cor + 9xAn. Observed slopes indicate 9.8 J/mol · K of Al-Si disorder in Ca-Tschermak pyroxene and 5.3 J/mol·K of Al-Si disorder in anorthite, at 1300°C. It is suggested that Al-Si disorder in anorthite increases by 1.9 J/mol · K from 700°C to 1300°C.Compositions of CaTs-CaEs pyroxene in equilibrium with anorthite and PbO-rich liquid were experimentally determined at 1400–1430°C and 22.7–30.8 kbar. Microprobe measurements gave compositions which are consistent with an ideal pyroxene solution and the following parameters for the reaction 3An = 2CaTs + 2CaEs (J, bar, K): 2RTln(XCaTs · XCaEs) + 60200 + 86.4T ? (5.06 + 13 × 10?7P)P = 0, resulting in ΔH0j = ?39.8 kJ/mol and S0 = 461.8 J/mol · K for the Ca-Eskola endmember at 1300°C. The obtained properties of the Ca-Eskola component are necessary for thermobarometry based on pyroxene bearing assemblages containing plagioclase, quartz, or kyanite.  相似文献   

8.
The pressure temperature stability of the phase Mn-cordierite hitherto not recorded as a mineral has been determined at temperatures ranging from 400° C up to the melting mainly using standard hydrothermal techniques at the oxygen fugacities provided by the buffering power of the bomb walls. Manganocordierite is a pronounced low-pressure phase with a maximum pressure stability of about 1 kb near 400° C and decreasing pressure limits at higher temperatures. Throughout the temperature range investigated the stable high-pressure breakdown assemblage of Mn-cordierite is spessartine, an Al-silicate, and a SiO2-polymorph. Due to the variable water contents of Mn-cordierite and spessartine there is a pronounced curvature in the negative dP/dT-slope of the requisite upper pressure breakdown curve of Mn-cordierite. Only theoretical deductions were possible concerning the stable hydrous low-temperature breakdown assemblage of Mn-cordierite below about 400° C.The manganocordierites synthesized are orthorhombic low-cordierites with distortion indices increasing with temperature, water pressure, and duration of heating. Their mean refractive indices increase with rising contents of absorbed water in the structural channels. Based on experiments with natural material the upper temperature stability limit of the mineral carpholite must lie at temperatures below about 400° C for water pressures up to 2.5 kb.The absence of Mn-cordierite from natural rocks studied thus far cannot be explained on chemical grounds, but must be due to its narrow pressure temperature stability range. The phase may yet be discovered as a mineral in manganiferous metasediments formed by lowpressure contact metamorphism.  相似文献   

9.
The effect of composition and temperature on the relaxed adiabatic bulk modulus of melts in the P2O5-Al2O 3-Na2SiO3 system have been investigated in the temperature range of 1140 to 1450 °C using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz. The density of these melts was determined using Pt-double-bob Archimedean densitometry techiques. P2O5 is known to dramatically affect the structure and the chemical and physical properties of granitic and pegmatitic melts as a function of the peralkalinity of the melt. The physical results of the structural changes occurring in Na2O-Al2O3-SiO2 melt upon the addition of P2O5 are observed by variations in the properties such as density and compressibility. For the present peralkaline melts, the bulk modulus and density decrease with addition of 15 mol% P2O5, and increase with the addition of 15 mol% Al2O3. The addition of P2O5 to the present melts results in a larger increase in melt compressibility than that observed with increasing polymerization between Na2SiO3 and Na2Si2O5 melts. This would suggest that not only is the polymerization of the melt increasing with the addition of P2O5 (Mysen et al. 1981; Nelson and Tallant 1984; Gan and Hess 1992), but that the tetrahedrally co-ordinated phosphorus complexes are influencing the bond lengths and energies within the melt structure; resulting in the structure becoming more compressible than expected, although incompressible (Vaughan and Weidner 1987) tetrahedral P2O5 polyhedra (Mysen et al. 1981; Gan and Hess 1992; Toplis et al. 1994) are being added to the melt structure.  相似文献   

10.
Activity diagrams in the system KAlSi3O8-NaAlSi3O8-Al2SiO5-SiO2-H2O-HClhave been calculated in terms of aK+/aH+ and aN+/aH+ from existingexperimental data. They show the effect of temperature, pressure,and aH2O on the stability fields of the alkali feldspars, micas,and aluminium silicate. These activity diagrams are useful in revealing the bufferingcapacity of mineral assemblages and the chemical potential gradientsestablished by changes in T, P, aH2O, and mineral assemblage.An analysis of mineral paragenesis in terms of these diagramssuggests that mosaic equilibrium, allowing limited metasomatismand internal buffering of chemical potentials, best describemetamorphic systems. Thus the dehydration reaction: muscovite+quartz=K-feldspar+Al2SiO5+H2O which is most important in closed systems, probably fails todescribe in detail the mechanism of natural muscovite decomposition.Rather the decomposition of muscovite is more likely representedby ionic reactions. The replacement of muscovite by feldspar: muscovite+6 SiO2+2 K+=3 K-feldspar+2 H+ muscovite+6 SiO2+3 Na+=3 Albite+K++2 H+ is favored at high temperature and low pressure, and may accountfor the crystallization of some feldspars in metamorphic rocks.The reaction involving aluminium silicate replacement of muscovite: 2 muscovite+2 H+=3 Al2SiO5+3 SiO2+3 H2O+2 K+ is favored at high temperature and pressure and low aH2O, andcould contribute to the development of the aluminium silicates.It is concluded that both activity diagrams and AKNa projectionsshould be used together to more completely evaluate mineralparagenesis in terms of mosaic equilibria.  相似文献   

11.
Heat capacity, thermal expansion, and compressibility data have been obtained for a number of selected phases of the system NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O. All C p measurements have been executed by DSC in the temperature range 133–823 K. The data for T ≥ 223 K have been fitted to the function C p (T) = a + cT  −2 + dT  −0.5 + fT  −3, the fit parameters being The thermal expansion data (up to 525 °C) have been fitted to the function V 0(T) = V 0(T) [1 + v 1 (TT 0) + v 2 (T−T 0)2], with T 0 = 298.15 K. The room-temperature compressibility data (up to 6 GPa) have been smoothed by the Murnaghan equation of state. The resulting parameters are These data, along with other phase property and reaction reversal data from the literature, have been simultaneously processed by the Bayes method to derive an internally consistent thermodynamic dataset (see Tables 6 and 7) for the NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O quinary. Phase diagrams generated from this dataset are compatible with cookeite-, ephesite-, and paragonite-bearing assemblages observed in metabauxites and common metasediments. Phase diagrams obtained from the same database are also in agreement with the cookeite-free, petalite-, spodumene-, eucryptite-, and bikitaite-bearing assemblages known to develop in the subsolidus phase of recrystallization of␣lithium-bearing pegmatites. It is gratifying to note that the cookeite phase relations predicted earlier by Vidal and Goffé (1991) in the context of the system Li2O-Al2O3-SiO2-H2O agree with our results in a general way. Received: 19 May 1998 / Accepted: 25 June 1998  相似文献   

12.
Pyrope and quartz are stable with respect to aluminous enstatite and sillimanite at 1400 °C, 20 kb and at 1100 °C, 16 kb. The phase boundary limiting the coexistence of pyrope and quartz towards lower pressures is probably slightly curved. A slope of 15 bars/°C at 1400° and of 10 bars/°C at 1000 °C has been estimated from the experimental data. Between 1050 and 1100 °C the curve is intersected by the kyanite-sillimanite phase boundary. The calculated slope of the reaction aluminous enstatite + kyanite pyrope + quartz is negative (ca. 18–25 bars/°C). The existence of a negative slope has been demonstrated experimentally. Experimental evidence indicates that the assemblage aluminous enstatite and sillimanite is metastable with respect to sapphirine + quartz at high temperature. The invariant point involving the phases pyrope-sapphirine-aluminous enstatite-sillimanite-quartz is estimated to occur at 1125°±25 °C and 16±1 kb. A model phase diagram for the silicasaturated part of the system MgO-Al2O3-SiO2 has been constructed. The position of three invariant points in this system has been estimated on the basis of presently available data.  相似文献   

13.
In the system Na2O-CaO-Al2O3-SiO2 (NCAS), the equilibrium compositions of pyroxene coexisting with grossular and corundum were experimentally determined at 40 different P-T conditions (1,100–1,400° C and 20.5–38 kbar). Mixing properties of the Ca-Tschermak — Jadeite pyroxene inferred from the data are (J, K): $$\begin{gathered} G_{Px}^{xs} = X_{{\text{CaTs}}} X_{{\text{Jd}}} [14,810 - 7.15T - 5,070(X_{{\text{CaTs}}} - X_{{\text{Jd}}} ) \hfill \\ {\text{ }} - 3,350(X_{{\text{CaTs}}} - X_{{\text{Jd}}} )^2 ] \hfill \\ \end{gathered} $$ The excess entropy is consistent with a complete disorder of cations in the M2 and the T site. Compositions of coexisting pyroxene and plagioclase were obtained in 11 experiments at 1,190–1,300° C/25 kbar. The data were used to infer an entropy difference between low and high anorthite at 1,200° C, corresponding to the enthalpy difference of 9.6 kJ/mol associated with the C \(\bar 1\) =I \(\bar 1\) transition in anorthite as given by Carpenter and McConnell (1984). The resulting entropy difference of 5.0 J/ mol · K places the transition at 1,647° C. Plagioclase is modeled as ideal solutions, C \(\bar 1\) and I \(\bar 1\) , with a non-first order transition between them approximated by an empirical expression (J, bar, K): $$\Delta G_T = \Delta G_{1,473} \left[ {1 - 3X_{Ab} \tfrac{{T^4 - 1,473^4 }}{{\left( {1,920 - 0.004P} \right)^4 - 1,473^4 }}} \right],$$ where $$\Delta G_{1,473} = 9,600 - 5.0T - 0.02P$$ The derived mixing properties of the pyroxene and plagioclase solutions, combined with the thermodynamic properties of other phases, were used to calculate phase relations in the NCAS system. Equilibria involving pyroxene+plagioclase +grossular+corundum and pyroxene+plagioclase +grossular+kyani te are suitable for thermobarometry. Albite is the most stable plagioclase.  相似文献   

14.
New experiments have been performed in the system CaO+MgO+Al2O3+SiO2 (CMAS)+FeO at atmospheric pressure. Most of the experiments were conducted on Fe-rich compositions, in the low-temperature field of the assemblage liq(liquid)+an(anorthite) +aug(augite)+ol(olivine), and mostly along five isotherms. Others were located on, or nearby the assemblage boundaries. These experiments, together with the previously reported high temperature experiments (Shi and Libourel 1991; Libourel et al. 1989), permit contouring the complete liq+an+aug+ol divariant field, and tracing out some of its boundaries. The boundary of the assemplage liq+an+aug+ol consists of six segments, with the appearance of one of the following phases, orthopyroxene, pigeonite, tridymite, bustamite, kirschsteinite, and spinel, as an additional phase. Within the stability field of the assemblage liq+an+aug+ol, the compositions of all the coexisting phases have been described as functions of temperature and silica content in the melt by applying a multiple linear regression method. This allows a quantitative characterization of the divariant assemblage liq+an+aug+ol in the system CMAS+FeO, from 1273°C to 1055°C, with olivine compositions ranging from Mg*[Mg/(Mg+Fe)]=1 to 0.08. Knowing the composition-temperature relationships, the basic T-X configuration of the assemblage liq+an +aug+ol has been analysed, and mass-balance calculations have been performed to examine the FeO effect on different crystallization processes. Addition of FeO to the system CMAS transforms the thermal divide in the assemblage liq+an+di(diopside)+fo(forsterite) into a thermal ridge. With decreasing temperature, the spine of the thermal ridge moves towards Si-poor compositions at Mg-rich end but towards Si-rich compositions at the Fe-rich end. This indicates that late-stage tholeiitic liquids can follow a trend of silica enrichment without the crystallization of an oxide phase. Crystallization paths of the assemblage liq+an+aug+ol are determined by the detailed T-X relations of the thermal ridge with the melt evolving away from the spine. The boundary reactions with decreasing temperature have also been characterized numerically.  相似文献   

15.
The hydration of peridotites modelled by the system H2O-CaO-MgO-Al2O3-SiO2 has been treated theoretically after the method of Schreinemakers, and has been investigated experimentally in the temperature range 700°–900° C and in the pressure range of 8–14 kbar. In the presence of excess forsterite and water, the garnet- to spinel-peridotite transition boundary intersects the chlorite dehydration boundary at an invariant point situated at 865±5° C and 15.2±0.3 kbar. At lower pressures, a model spinel lherzolite hydrates to both chlorite- and amphibole-bearing assemblages at an invariant point located at 825±10° C and 9.3±0.5 kbar. At even lower pressures the spinel-to plagioclase-peridotite transition boundary intersects the dehydration curve for amphibole+forsterite at an invariant point estimated to lie at 855±10° C and 6.5±0.5 kbar.Both chlorite and amphibole were characterized along their respective dehydration curves. Chlorite was found to shift continuously from clinochlore, with increasing temperature, to more aluminous compositions. Amphibole was found to be tremolitic with a maximmum of 6 wt.% Al2O3.The experimentally determined curves in this study were combined with the determined or estimated stability curves for hydrous melting, plagioclase, talc, anthophyllite, and antigorite to obtain a petrogenetic grid applicable to peridotites, modelled by the system H2O-CaO-MgO-Al2O3-SiO2, that covers a wide range of geological conditions. Direct applications of this grid, although quite limited, can be made for ultramafic assemblages that have been extensively re-equilibrated at greenschist to amphibolite facies metamorphism and for some highgrade ultramafic assemblages that display clear signs of retrogressive metamorphism.  相似文献   

16.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

17.
Summary. ?Ca-tourmaline has been synthesized hydrothermally in the presence of Ca(OH)2 and CaCl2-bearing solutions of different concentration at T = 300–700 °C at a constant fluid pressure of 200 MPa in the system CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthesis of tourmaline was possible at 400 °C, but only above 500 °C considerable amounts of tourmaline formed. Electron microprobe analysis and X-ray powder data indicate that the synthetic tourmalines are essentially solid solutions between oxy-uvite, CaMg3- Al6(Si6O18)(BO3)3(OH)3O, and oxy-Mg-foitite, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O. The amount of Ca ranges from 0.36 to 0.88 Ca pfu and increases with synthesis temperature as well as with bulk Ca-concentration in the starting mixture. No hydroxy-uvite, CaMg3(MgAl5)(Si6O18)(BO3)3(OH)3(OH), could be synthesized. All tourmalines have < 3 Mg and > 6 Al pfu. The Al/(Al + Mg)-ratio decreases from 0.80 to 0.70 with increasing Ca content. Al is coupled with Mg and Ca via the substitutions Al2□Mg−2Ca−1 and AlMg−1H−1. No single phase tourmaline could be synthesized. Anorthite ( + quartz in most runs) has been found coexisting with tourmaline. Other phases are chlorite, tremolite, enstatite or cordierite. Between solid and fluid, Ca is strongly fractionated into tourmaline ( + anorthite). The concentration ratio D = Ca(fluid)/Ca(tur) increases from 0.20 at 500 °C up to 0.31 at 700 °C. For the assemblage turmaline + anorthite + quartz + chlorite or tremolite or cordierite, the relationship between Ca content in tourmaline and in fluid with temperature can be described by the equation (whereby T = temperature in °C, Ca(tur) = amount of Ca on the X-site in tourmaline, Ca( fluid) = concentration of Ca2+ in the fluid in mol/l). The investigations may serve as a first guideline to evaluate the possibility to use tourmaline as an indicator for the fluid composition.
Zusammenfassung. ?Synthese von Ca-Turmelin im System CaO-MgO-Al 2 O 3 -SiO 2 -B 2 O 3 -H 2 O-HCl Im System CaO-MgO-Al2O3-SiO2-B2O3-H2O-HCl wurde Ca-Turmalin hydrothermal aus Ca(OH)2 and CaCl2-haltigen L?sungen bei T = 300–700 °C und einem konstanten Fluiddruck von 200 MPa synthetisiert. Die Synthese von Turmalin war m?glich ab 400 °C, aber nur oberhalb von 500 °C bildeten sich deutliche Mengen an Turmalin. Elektronenstrahl-Mikrosondenanalysen und R?ntgenpulveraufnahmen zeigen, da? Mischkristalle der Reihe Oxy-Uvit, CaMg3Al6(Si6O18)(BO3)3(OH)3O, und Oxy-Mg-Foitit, □(MgAl2)Al6(Si6O18)(BO3)3(OH)3O gebildet wurden. Der Anteil an Ca variiert zwischen 0.36 und 0.88 Ca pfu und nimmt mit zunehmender Synthesetemperatur und zunehmender Ca-Konzentration im System zu. Hydroxy-Uvit, CaMg3(MgAl5) (Si6O18)(BO3)3(OH)3(OH), konnte nicht synthetisiert werden. Alle Turmaline haben < 3 Mg und > 6 Al pfu. Dabei nimmt das Al/(Al + Mg)- Verh?ltnis mit zunehmendem Ca-Gehalt von 0.80 auf 0.70 ab. Al ist gekoppelt mit Mg und Ca über die Substitutionen Al2□Mg−2Ca−1 und AlMg−1H−1. Einphasiger Turmalin konnte nicht synthetisiert werden. Anorthit (+ Quarz in den meisten F?llen) koexistiert mit Turmalin. Andere Phasen sind Chlorit, Tremolit, Enstatit oder Cordierit. Ca zeigt eine deutliche Fraktionierung in den Festk?rpern Turmalin (+ Anorthit). Das Konzentrationsverh?ltnis D = Ca(fluid)/Ca(tur) nimmt von 0.20 bei 500 °C auf 0.31 bei 700 °C zu. Für die Paragenese Turmalin + Anorthit + Quarz mit Chlorit oder Tremolit oder Cordierit gilt folgende Beziehung zwischen Ca-Gehalt in Turmalin und Fluid und der Temperatur: (wobei T = Temperatur in °C, Ca(tur) = Anteil an Ca auf der X-Position in Turmalin, Ca(fluid) = Konzentration von Ca2+ im Fluid in mol/l). Die Untersuchungen dienen zur ersten Absch?tzung, ob Turmalin als Fluidindikator petrologisch nutzbar ist.


Received July 24, 1998;/revised version accepted October 21, 1999  相似文献   

18.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

19.
BERMAN  R. G. 《Journal of Petrology》1988,29(2):445-522
Internally consistent standard state thermodynamic data arepresented for 67 minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2.The method of mathematical programming was used to achieve consistencyof derived properties with phase equilibrium, calorimetric,and volumetric data, utilizing equations that account for thethermodynamic consequences of first and second order phase transitions,and temperature-dependent disorder. Tabulated properties arein good agreement with thermophysical data, as well as beingconsistent with the bulk of phase equilibrium data obtainedin solubility studies, weight change experiments, and reversalsinvolving both single and mixed volatile species. The reliabilityof the thermodynamic data set is documented by extensive comparisons(Figs. 4–45) between computed equilibria and phase equilibriumdata. The high degree of consistency obtained with these diverseexperimental data gives confidence that the refined thermodynamicproperties should allow accurate prediction of phase relationshipsamong stoichiometric minerals in complex chemical systems, andprovide a reasonable basis from which activity models for mineralsmay be derived.  相似文献   

20.
Molecular dynamics (MD) simulations have been used to calculate the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2 (CMAS) using an interatomic potential model (CMAS94), which is composed of pairwise additive Coulomb, van der Waals, and repulsive interactions. The crystals studied, total of 27, include oxides, Mg meta- and ortho-silicates, Al garnets, and various Ca or Al bearing silicates, with the coordination number of cations ranging 6 to 12 for Ca, 4 to 12 for Mg, 4 to 6 for Al, and 4 and 6 for Si. In spite of the simplicity of the CMAS94 potential and the diversity of the structural types treated, MD simulations are quite satisfactory in reproducing well the observed structural data, including the crystal symmetries, lattice parameters, and average and individual nearest neighbour Ca-O, Mg-O, Al-O, and Si-O distances. In addition MD simulated bulk moduli of crystals in the CMAS system compare well with the observed values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号