首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New results from electrophotometric scanning of the solar disk in the HeI λ 10830 Å and Hα lines are presented. The intensity at the center of the HeI λ 10830.30 Å line is 1–3% higher in the regions of coronal holes than in quiescent regions; this is accompanied by a decrease in the size and contrast of the chromospheric network compared to the network in quiescent regions. Our observations in the HeI line revealed chains of “dark points” surrounding coronal holes. The Hα±0.5 observations show increased velocities of ascent near the dark points compared to the velocities inside coronal holes and in quiescent regions. It is proposed that the intensification and acceleration of the flows of solar plasma from the dark points are due to reconnection of the magnetic fields of the bipolar chromospheric network and the predominantly unipolar magnetic field inside the coronal holes. Our observations suggest that the same reconnection process takes place near the temperature minimum, in the presence of certain conditions at the boundary between coronal holes and bipolar active regions. The reconnection process produces plasma flows from the chromosphere to the corona, which are sufficient to form prominences.  相似文献   

2.
Analysis of long-term measurements of solar magnetic fields and the flux of UV radiation from the Sun indicates a cause-effect relationship between activity complexs, their residual magnetic fields, and coronal holes. A comparison of the background magnetic fields of the Sun and the evolution of former activity complexes reveals unipolar magnetic regions that form after the decay of these complexes. The latitude and time evolution of unipolar magnetic regions in solar cycles 21–24 is studied. A North-South asymmetry in solar activity is manifest in the distribution of unipolar regions migrating toward higher latitudes. It is shown that, when residual magnetic fields of the opposite polarity reach the polar regions, this leads to a sign change of the polar magnetic field and a decrease in the area of polar coronal holes, or even their complete disappearance. These interactions can explain the triple sign change of the polar magnetic field of the Sun in cycle 21 and the short-term polarity reversals observed in 2010 and 2011.  相似文献   

3.
The relationship between the brightness in the FeXIV 530.3 nm coronal green line and magnetic fields on various scales in the corona is studied quantitatively. The cross-correlations of the corresponding synoptic maps for 1977–2001 have been calculated. Maps of the brightness of the coronal green line are constructed using daily monitoring data. Maps of the magnetic field are constructed separately for fields on large and small spatial scales, based on computations in a potential approximation using photospheric observations for distances of 1.1R carried out at the Wilcox Solar Observatory. The correlations between the brightness in the coronal green line and the magnetic-field strengths on various scales as a function of latitude have a cyclic character. The correlation coefficients in the spot-formation zone are positive. Here, the green-line brightness corresponds mainly to the strength of small-scale fields, corresponding to the sizes of large active regions and activity complexes. The correlation coefficients are sign-variable above 40° latitude, and reach their greatest positive and negative values at the cyclemaximum and minimum. Larger-scale fields influence the green-line brightness at higher latitudes and near the phase of the cycle minimum. The results obtained can be used to investigate mechanisms for heating the corona. The relationship between the results obtained and the subsurface and deep solar dynamos are also discussed.  相似文献   

4.
Large-scale solar disturbances associated with powerful flares and coronal mass ejections (CMEs) during two passages of a grand system of three active regions in October–November 2003 are analyzed using data obtained with the SOHO/EIT EUV telescope. Dimmings (transient coronal holes) and, to a lesser extent, coronal waves (traveling emitting fronts) are studied using fixed-difference derotated images, in which a correction for the solar rotation is applied and a single heliogram preceding the event is subtracted from all subsequent heliograms. This method allows us to study difference heliograms in both the 195 Å line (with an interval of 12 min) and the various-temperature channels of 171, 195, 284, and 304 Å (with an interval of six hours). Our analysis shows, in particular, that the disturbances associated with CMEs demonstrated a global character and occupied almost the entire southern half of the disk in virtually all eruptive events during the two solar rotations. At the same time, the northern half of the disk, which had a large coronal hole, was only slightly disturbed. The dominant dimmings were observed on the disk as narrow, long features stretched mainly between three main, well-separated regions of the system and as long structures located along lines of solar latitude in the south polar sector. For repetitive events with intervals between them being not so long, the dominant dimmings demonstrated a clear homology in their forms and locations. During the very powerful event of October 28, one homologous global set of dimmings changed to another set. Many dimmings were observed to be identical or very similar in the three coronal channels and the transition-region line. It follows from the analysis that rapidly recovering global structures in the corona and transition region were involved in the eruption of running CMEs and the corresponding reconstruction of the large-scale magnetic fields.  相似文献   

5.
A new type of dimmings, or transient coronal holes (i.e., regions of reduced soft-X-ray and EUV emission), is revealed in analyses of difference solar images obtained with the SOHO EIT ultraviolet telescope at 195 Å. Such features can be observed on the solar disk after halo-type coronal mass ejections (CMEs). If several active regions, filaments, and other structures are present on the disk during a major eruptive event, then strongly anisotropic, channel-shaped (“channeled”) dimmings coexist with relatively compact dimmings adjacent to the eruption center. The channeled dimmings are comparable to the compact dimmings in terms of their contrast; stretch along several narrow, extended features (channels); and can span nearly the entire visible disk. Coronal waves, which appear as fronts of enhanced brightness traveling ahead of the dimmings in some halo CME events, are also anisotropic. We argue that such transient phenomena are closely related to the strong disturbance and restructuring of large-scale magnetic fields involved in CMEs, and the channeled character of the dimmings reflects the complexity of the global solar magnetosphere, in particular, near the solar-activity maximum.  相似文献   

6.
Data obtained with the EIT UV telescope and LASCO coronagraph of the SOHO satellite are used to analyze large-scale solar disturbances associated with a series of major flares and coronal mass ejections that occurred in the late decline phase of cycle 23, on November 3–10, 2004, and gave rise to strong geomagnetic storms. Derotated fixed-base difference heliograms taken in the 195 Å coronal channel at 12-min intervals and in the various-temperature 171, 195, 284, and 304 Å channels at 6-h intervals indicate that these disturbances were global and homologous; i.e., they had similar characteristics and affected the same structures. Almost all of the nine events of this series included two recurrent systems of large-scale dimmings (regions of reduced intensity with lifetimes of 10–15 h): (a) transequatorial dimmings connecting a northern near-equatorial eruption center with a southern active region and (b) northern dimmings covering a large sector between two coronal holes. In this northern sector, coronal waves (brightenings propagated from the eruption center at speeds of several hundred km/s) were observed ahead of the expanding dimmings. The brightest, central part of the halo-type coronal mass ejection in each event corresponded to the northern dimming system. The properties of the dimmings and coronal waves and the relationship between them are discussed on the basis of the results obtained. We find that the eruption of large coronal mass ejections involves structures of the global solar magnetosphere with spatial scales far exceeding the sizes of active regions and normal activity complexes.  相似文献   

7.
An experimental study of the source and formation of large-scale streams in the solar wind is presented. Radio-astronomical data from 1998 are compared with optical SOHO observations and solar coronal magnetic fields calculated from Zeeman data obtained at the Wilcox Observatory. A correlation between the geometry of the solar-wind transition region and the strength of coronal magnetic fields is revealed. For the moderate heliolatitudes studied, this correlation divides into three branches corresponding to three types of coronal magnetic-field structures: open structures with field lines escaping into interplanetary space, closed structures with loop-like field lines, and intermediate structures including both open and closed configurations. High-speed streams of solar wind originate in regions with open magnetic structures. These structures are connected with the lateral lobes of streamers at moderate heliolatitudes. Low-speed flows originate above closed magnetic structures, typical of the main bodies of streamers. The lowest-speed solar-wind flows are not associated with coronal streamer structures, and originate in coronal regions with intermediate magnetic configurations simultaneously containing open and closed field lines. In these regions, the white-light corona becomes an extended and amorphous area with high luminosity, which stratifies into a radial structure with narrow stripes at higher resolution.  相似文献   

8.
9.
The differential rotation of the solar corona is studied using the brightness of the Fe XIV 530.3 nm green coronal line collected over 5.5 solar-activity cycles. The total observed velocity of the coronal rotation is analyzed as a superposition of two modes—fast and slow. A technique for separating two data series composing the initial data set and corresponding to the two differential-rotation modes of the solar corona is proposed. The first series is obtained by averaging the initial data set over six successive Carrington rotations; this series corresponds to long-lived, large-scale coronal regions. The second series is the difference between the initial data and the averaged series, and corresponds to relatively quickly varying coronal component. The coronal rotation derived from the first series coincides with the fast mode detected earlier using the initial data set; i.e., the synodic period of this mode is 27 days at the equator, then weakly increases with latitude, slightly exceeding 28 days at high latitudes. The second series describes a slow rotation displaying a synodic period of about 34 days. This coincides with the period of rotation of the high-latitude corona derived by M. Waldmeier for polar faculae. We expect that coronal objects corresponding to the fast mode are associated with magnetic fields on the scales typical for large activity complexes. The slow mode may be associated with weak fields on small scales.  相似文献   

10.
We study the active region NOAA 9591 using observations at 1.92–10.17 cm obtained on two large Russian radio instruments: the RATAN-600 radio telescope and the Siberian Solar Radio Telescope. The active region was associated with an isolated spot at the photospheric level, whose magnetic field had a well-defined Delta configuration. The radio observations show that the structure of the coronal source located above the spot cannot be described in a simple (unipolar) cyclotron model. A comparison with X-ray observations indicates that the three-dimensional structure of the corona above the spot can be represented as a strongly elongated loop whose apex resembles a cusp brightening (a qualitative model for the structure is presented). Unexpectedly, radiation with a high degree of polarization (~25%) was detected far (~100 000 km) from the photosphere. The need for a quantitative model for coronal sources above the strong Delta-configuration magnetic fields, which are known to play an important role in active solar processes (flares, phenomena such as coronal-mass ejections) is outlined. Thanks to its simple morphology, which enabled the identification of a pure Delta configuration, the active region NOAA 9591 provides high-quality observational material for the creation of such a model.  相似文献   

11.
We review high spatial resolution microwave observations of solar active regions, coronal loops and flares. Observations of preflare active regions are presented; in particular we discuss the interpretations of reversal of polarization at the flare site and the role of newly emerging flux in triggering the onset of flares. We discuss the spatial locations of microwave burst emitting regions; loops or arcades of loops appear to be the sites of flare energy release in microwave bursts. We provide direct observational evidence of magnetic reconnection as the primary cause of acceleration of electrons in microwave bursts.  相似文献   

12.
It is shown that the parameters of the solar-wind magnetic field are determined by regions in coronal holes at distances of 1.1–1.4 solar radii, where the field lines are radial at low heights. Expanding further in a narrow nozzle or funnel, the field lines become radial throughout the unipolar region at 2.5 solar radii. Hence, the traditional approach of comparing the characteristics of the interplanetary field at the Earth’s orbit and at the corresponding helio-projection point on the Sun is not quite correct. It gives good results for the signs and sector structure of the field; however, the magnitude of the field is formed in a more extensive area. Taking this into account, we can correlate the field values on the Sun with the interplanetary magnetic field (IMF), and thus explain the absence of weak fields in the vicinity of the IMF neutral line (the two-peaked nature of the distribution).  相似文献   

13.
The mutual spatial arrangement of coronal mass ejections and eruptive prominences on the Sun is considered. These phenomena occur on different scales and are observed at different heights above the solar surface. In spite of the presumed causal connection between them, they are often widely separated in position angle at epochs of solar minimum. This means that the motion of a prominence in the corona is not strictly radial and has an appreciable component along the surface. This behavior can be explained in a model of a filament as a magnetic flux rope in equilibrium in the coronal magnetic field. The initial trajectory of the filament is determined by the structure of the global field.  相似文献   

14.
This paper presents a statistical study of various integrated parameters of solar active regions, such as the distance between the polarity centroids, the inclination of the magnetic axis, the flux imbalance between the polarities, and the interosculation parameter of the magnetic fluxes of opposite polarities. The study is based on observations of the longitudinal photospheric magnetic field. We analyze ten active regions for which an appreciable volume of data with good spatial resolution are available. The distributions of the above parameters with field strength are very different for quiet and flare-productive active regions and for quiet and flare-active evolutionary phases of the same active region. Some distributions exhibit substantial and characteristic variations during the development of certain flare processes. The first moments of the distributions reflect specific features in the configuration of the photospheric magnetic fields and are correlated with the level of eruptive processes in the active regions.  相似文献   

15.
Soft X-ray data for prolonged flares in subgiants in RS CVn binary systems and some other active late-type stars (AB Dor, Algol) are analyzed. During these nonstationary events, a large amount of hot plasma with temperatures exceeding 108 K exists for many hours. Numerical simulations of gas-dynamical processes in the X-ray source—giant loops—can yield reliable estimates of the plasma parameters and flare-source size. This confirms that such phenomena exist while considerable energy is supplied to the top part of a giant loop or system of loops. Refined estimates of the flare energy (up to 1037 erg) and scales contradict the widely accepted idea that prolonged X-ray flares are associated with the evolution of local magnetic fields. The energy of the current component of the large-scale magnetic field arising during the ejection of magnetic field by plasma jets or stellar wind is estimated. Two cases are considered: a global stellar field and fields connecting regions with oppositely directed unipolar magnetic fields. The inferred energy of the current component of the magnetic field associated with distortion of the initial MHD configuration is close to the total flare energy, suggesting that large-scale magnetic fields play an important role in prolonged flares. The flare process encompasses some portion of a streamer belt and may propagate along the entire magnetic equator of the star during the most powerful prolonged events.  相似文献   

16.
Episodic observations of coronal holes were carried out simultaneously in several spectral lines during the 2002–2005 observational seasons. An analysis of eighteen time series is used to obtain the amplitude—spectral properties of oscillatory wave motions of the solar plasma at the bases of coronal holes. It is found that the amplitudes of the 5-min and 3-min line-of-sight velocity oscillations increase in coronal holes. Low-frequency (1–2 mHz) oscillations are concentrated at the boundaries of the chromospheric network, while the 3-mHz and 5-mHz oscillations dominate in the network cells. Clear indications of propagating waves have been found at the bases of coronal holes. The 3 mHz phase velocities are 45 ± 5 km/s and 80–100 km/s for the equatorial and polar coronal holes, respectively.  相似文献   

17.
The event of September 12, 1999 is used to analyze large-scale disturbances associated with coronal mass ejections during the eruption of filaments outside active regions. The analysis is based on Hα filtergrams, EUV and soft X-ray images, and coronograph data. The filament eruption occurred in relatively weak magnetic fields, but was accompanied by larger-scale phenomena than flare events. During several hours after the eruption, a large-scale arcade developed, whose bases formed diverging flare-like ribbons. The volume of the event was bounded by an “EIT wave”, which was quasi-stationary at the solar surface and expanded above the limb. The event did not have an impulsive component; therefore the “EIT wave” above the limb was a magnetic structure, identified as the front of a coronal mass ejection by virtue of its shape, structural features, and kinematics. Three types of dimmings were observed within the areal of the event, cause by (a) the evacuation of plasma, (b) heating of plasma with its subsequent evacuation, and (c) the absorption of radiation in a system of filaments activated by the eruption. The fact that a dimming appeared due to plasma heating was revealed by its presence in soft X-rays, whereas the four EIT channels did not demonstrate this. This brings into question the correctness of certain conclusions drawn earlier based purely on EIT data. A transformation of magnetic fields brought about by the eruption also occurred in a stationary coronal hole adjacent to the areal of the event. The expansion of the coronal mass ejection was self-similar and characterized by a rapidly decreasing acceleration, which is not taken into account in the widely used polynomial approximation.  相似文献   

18.
Solar flares observed during the 24th solar-activity cycle and accompanied by fluxes of particles detected at the Earth’s orbit with intensities exceeding 10 particles cm?2 s?1 and energies of more than 10 MeV per particle mainly occurred in activity complexes (82% of cases), with 80% of these occurring no more than 20 heliographic degrees from the nearest coronal holes. The correlation between the X-ray classes of flares and the proton fluxes detected at the Earth’s orbit is weak. The work presented here supports the hypothesis that the leakage of particles into the heliosphere is due to the existence of long-lived magnetic channels, which facilitate the transport of flare-accelerated particles into the boundary regions of open magnetic structures of coronal holes. The possible contribution of exchange reconnection in the formation of such channels and the role of exchange reconnection in the generation of flares are discussed.  相似文献   

19.
Data on small active regions on the Sun collected over three years (2007–2009) are analyzed. Under very quiescent conditions (a low X-ray background level), the shapes of the coronal loops of some active regions correspond fairly well to the shapes of magnetic-field lines calculated in a potential approximation. This is true of several active regions (e.g., the group AR 10999 in June 2008) in which no flares more powerful than B3 were observed. The radio emission of this active region detected by the RATAN-600 telescope was very weak and virtually no polarization was detected. Subflares were observed in most groups. It is demonstrated using AR 10933 (January 2007) as an example that a growth in the soft X-ray emission by up to factors of ten simultaneous with an increase in the radio flux is characteristic for such active regions. A source with the opposite polarization developed to the Northwest of the main spot in AR 10933. A series of SOHO/MDI (and also Hinode) magnetograms shows the emergence of new magnetic flux before the development of this polarized source, which continued for several hours on January 8, 2007. The current density at surfaces located at various heights is estimated based on observations of the total vector magnetic field (Hinode data) and a non-linear, force-free magnetic-field extrapolation. The height-integrated current becomes appreciably stronger at two nodes above a field neutral line, near the location of the main emerging flux. This supports the idea that the emergence of new magnetic flux is a key factor in the evolution of active regions at all stages of their existence. The development of this picture could help in elucidating the inter-relationship between current enhancements, plasma heating, and particle acceleration, in both weak active regions and strong activity complexes.  相似文献   

20.
We have confirmed the BY Dra-type variability of the active spotted stars MS Ser, LQ Hya, VY Ari, and EK Dra using simultaneous UBVRI photometric and polarimetric observations. We have also reliably detected the intrinsic linear polarization of their radiation and its rotational modulation in U due to the inhomogeneous distribution of active magnetized regions over the surfaces of the stars. Modeling of the linear polarization based on the Zeeman effect indicates that all the stars display strong local magnetic fields (about 2 kG, similar to those in sunspots), with filling factors of up to 40% of the total stellar surface. The magnetized regions coincide with cool photospheric spots detected in photoelectric observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号