首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper deals with the question of whether elliptical galaxies can be considered as equilibrium systems (i.e., the gravitational+centrifugal potential is constant on the external surface). We find that equilibrium models such as Emden-Chandrasekhar polytropes and Roche polytropes withn=0 can account for the main part of observations relative to the ratio of maximum rotational velocity to central velocity dispersion in, elliptical systems. More complex models involving, for example, massive halos could lead to a more complete agreement. Models that are a good fit to the observed data are characterized by an inner component (where most of the mass is concentrated) and a low-density outer component. A comparison is performed between some theoretical density distributions and the density distribution observed by Younget al. (1978) in NGC 4473, but a number of limitations must be adopted. Alternative models, such as triaxial oblate non-equilibrium configurations with coaxial shells, involve a number of problems which are briefly discussed. We conclude that spheroidal oblate models describing elliptical glaxies cannot be ruled out until new analyses relative to more refined theoretical equilibrium models (involving, for example, massive halos) and more detailed observations are performed.  相似文献   

2.
The instability of anisotropic disk systems with elongated stellar orbits has been investigated. N-body generalized polytropic models of stellar disks have been constructed. They are shown to be unstable with respect to the bar formation at any degree of anisotropy. This result differs from the results of the studies of such models by other authors. The bar pattern speed and amplitude have been found. The initial distribution of precession rates and the adiabatic invariants of stellar orbits have been calculated. A bar is shown to be formed in such systems due to the radial orbit instability.  相似文献   

3.
It is well known that the density and anisotropy profile in the inner regions of a stellar system with positive phase-space distribution function (DF) are not fully independent. Here, we study the interplay between density profile and orbital anisotropy at large radii in physically admissible (consistent) stellar systems. The analysis is carried out by using two-component  ( n - γ, γ1)  spherical self-consistent galaxy models, in which one density distribution follows a generalized γ profile with external logarithmic slope n , and the other a standard  γ1  profile (with external slope 4). The two density components have different 'core' radii, the orbital anisotropy is controlled with the Osipkov–Merritt recipe, and for simplicity we assume that the mass of the  γ1  component dominates the total potential everywhere. The necessary and sufficient conditions for phase-space consistency are determined analytically, also in the presence of a dominant massive central black hole, and the analytical phase-space DF of (   n - γ  ,1) models, and of   n - γ  models with a central black hole, is derived for  γ= 0, 1, 2  . It is found that the density slope in the external regions of a stellar system can play an important role in determining the amount of admissible anisotropy: in particular, for fixed density slopes in the central regions, systems with a steeper external density profile can support more radial anisotropy than externally flatter models. This is quantified by an inequality formally identical to the 'cusp slope-central anisotropy' theorem by An & Evans, relating at all radii (and not just at the centre) the density logarithmic slope and the anisotropy indicator in all Osipkov–Merritt systems.  相似文献   

4.
Using a consistent perturbation theory for collisionless disk-like and spherical star clusters, we construct a theory of slow modes for systems having an extended central region with a nearly harmonic potential due to the presence of a fairly homogeneous (on the scales of the stellar system) heavy, dynamically passive halo. In such systems, the stellar orbits are slowly precessing, centrally symmetric ellipses (2: 1 orbits). Depending on the density distribution in the system and the degree of halo inhomogeneity, the orbit precession can be both prograde and retrograde, in contrast to systems with 1: 1 elliptical orbits where the precession is unequivocally retrograde. In the first paper, we show that in the case where at least some of the orbits have a prograde precession and the stellar distribution function is a decreasing function of angular momentum, an instability that turns into the well-known radial orbit instability in the limit of low angular momenta can develop in the system. We also explore the question of whether the so-called spoke approximation, a simplified version of the slow mode approximation, is applicable for investigating the instability of stellar systems with highly elongated orbits. Highly elongated orbits in clusters with nonsingular gravitational potentials are known to be also slowly precessing 2: 1 ellipses. This explains the attempts to use the spoke approximation in finding the spectrum of slow modes with frequencies of the order of the orbit precession rate. We show that, in contrast to the previously accepted view, the dependence of the precession rate on angular momentum can differ significantly from a linear one even in a narrow range of variation of the distribution function in angular momentum. Nevertheless, using a proper precession curve in the spoke approximation allows us to partially “rehabilitate” the spoke approach, i.e., to correctly determine the instability growth rate, at least in the principal (O(α T−1/2) order of the perturbation theory in dimensionless small parameter α T, which characterizes the width of the distribution function in angular momentum near radial orbits.  相似文献   

5.
Using a consistent perturbation theory for collisionless disk-like and spherical star clusters, we construct a theory of slow modes for systems having an extended central region with a nearly harmonic potential due to the presence of a fairly homogeneous (on the scales of the stellar system) heavy, dynamically passive halo. In such systems, the stellar orbits are slowly precessing, centrally symmetric ellipses (2: 1 orbits). We consider star clusters with monoenergetic distribution functions that monotonically increase with angular momentum in the entire range of angular momenta (from purely radial orbits to circular ones) or have a growing region only at low angular momenta. In these cases, there are orbits with a retrograde precession, i.e., in a direction opposite to the orbital rotation of the star. The presence of a gravitational loss-cone instability, which is also observed in systems of 1: 1 orbits in near-Keplerian potentials, is associated with such orbits. In contrast to 1: 1 systems, the loss-cone instability takes place even for distribution functions monotonically increasing with angular momentum, including those for systems with circular orbits. The regions of phase space with retrograde orbits do not disappear when the distribution function is smeared in energy. We investigate the influence of a weak inhomogeneity of a heavy halo with a density that decreases with distance from the center.  相似文献   

6.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

7.
The structure of critically rotating polytropes is calculated using two (reated) Roche-type approximation schemes, one of which has been developed for stellar models. Comparisons with other results are made as a validation of these methods in stellar structure calculations.  相似文献   

8.
We consider disk and spherical subsystems of stars with nearly radial orbits under conditions when the well-known radial orbit instability is not possible. This requires that the precession of stellar orbits be retrograde, i.e., in the direction opposite to the orbital rotation of stars. We show that an instability that is an analogue of the loss-cone instability known in plasma physics can then develop in the presence of a “loss cone” in the angular momentum distribution of stars, which ensures a deficit or even absence of stars with low angular momenta. Examples of systems with a loss cone are the centers of galaxies or star clusters with massive black holes. The instability can produce a flux of stars onto the galactic center, i.e., it can serve as a mechanism of fueling the nuclear activity of galaxies. Mathematically, the problem is reduced to analyzing simple characteristic equations that describe small perturbations in a disk and a sphere of radially highly elongated stellar orbits. In turn, these characteristics equations are derived through a number of successive simplifications of the general linearized Vlasov equations (i.e., the system that includes the collisionless Boltzmann kinetic equation and the Poisson equation) in action—angle variables.  相似文献   

9.
In this paper we investigate the gravothermal instability of spherical stellar systems endowed with a radially anisotropic velocity distribution. We focus our attention on the effects of anisotropy on the conditions for the onset of instability and in particular we study the dependence of the spatial structure of critical models on the amount of anisotropy present in a system. The investigation has been carried out by the method of linear series which has already been used in the past to study the gravothermal instability of isotropic systems._   We consider models described by King, Wilson and Woolley–Dickens distribution functions. In the case of King and Woolley–Dickens models, our results show that, for quite a wide range of the amount of anisotropy in the system, the critical value of the concentration of the system (defined as the ratio of the tidal to the King core radius of the system) is approximately constant and equal to the corresponding value for isotropic systems. Only for very anisotropic systems does the critical value of the concentration start to change and it decreases significantly as the anisotropy increases and penetrates the inner parts of the system. For Wilson models the decrease of the concentration of critical models is preceded by an intermediate regime in which critical concentration increases, reaches a maximum and then starts to decrease. The critical value of the central potential always decreases as the anisotropy increases.  相似文献   

10.
The basic theory on polytorpes is revisited and EC polytropes are defined. The first-order approximation theory of Chandrasekhar (1933a, b, c) and Chandrasekhar and Lebovitz (1962) is reviewed, refined and extended in such a way that better results are obtained without involving hard analytical or numerical techniques. A more precise equation is given in defining non-outer equipotential surfaces, and a new method is adopted in determining the explicit expression of the gravitational potential. This method essentially consists in equating the expression of the gravitational potential and its first radial derivative determined by accounting for the equilibrium condition, with the corresponding expression of the gravitational potential and its first radial derivative determined by accounting for mass distribution. Such expressions are to be calculated at convenient points — for instance, at the centre and at the pole of the system. In this way, an infinity of exact solutions is derived for the special casesn=0 andn=1, and we then have the problem: ‘Which of the infinite number of solutions available leads to the most stable configuration?’ The simplest of these solutions is taken into account in detail for bothn=0 andn=1; results relative to the latter case allow us to solve the Kopal (1937) problem. EC polytropes withn=5 are found to consist of an inner massive non-rotating component and an outer zero-density rotating atmosphere. It is seen that they are equivalent in some respects to Roche systems, and the corresponding exact solution is derived. Explicit expressions for characteristic physical parameters are also determened in the general case, relative to sequences of equilibrium states characterized by constant masses and angular momenta. Detailed results are given for the special casesn=0, 1 and 5. Finally, some properties of both EC polytropes and R polytropes withn=0 (i.e., generalized Roche systems) are reported and discussed. The conclusions of this paper make it highly desirable to have an extension of the method used here to general values ofn.  相似文献   

11.
We consider both mode calculations and time-evolutions of axial r modes for relativistic uniformly rotating non-barotropic neutron stars, using the slow-rotation formalism, in which rotational corrections are considered up to linear order in the angular velocity Ω. We study various stellar models, such as uniform density models, polytropic models with different polytropic indices n , and some models based on realistic equations of state. For weakly relativistic uniform density models and polytropes with small values of n , we can recover the growth times predicted from Newtonian theory when standard multipole formulae for the gravitational radiation are used. However, for more compact models, we find that relativistic linear perturbation theory predicts a weakening of the instability compared to the Newtonian results. When turning to polytropic equations of state, we find that for certain ranges of the polytropic index n , the r mode disappears, and instead of a growth, the time-evolutions show a rapid decay of the amplitude. This is clearly at variance with the Newtonian predictions. It is, however, fully consistent with our previous results obtained in the low-frequency approximation.  相似文献   

12.
The existence of a third isolating (nonclassical) integral of motion is, in a certain sense, related to a nongaussian velocity distribution in stellar systems. Based on a previously found series of models with St?ckel potentials, several characteristics of these models are generalized by linear superposition to describe some observed properties of galactic systems. Corresponding formulas for the circular rotation velocity and surface density are obtained. The variations of these characteristics are plotted graphically for two interesting cases.  相似文献   

13.
We explore the gravitational influence of pressure-supported stellar systems on the internal density distribution of a gaseous environment. We conclude that compact massive star clusters with masses  ≳106 M  act as cloud condensation nuclei and are able to accrete gas recurrently from a warm interstellar medium which may cause further star formation events and account for multiple stellar populations in the most massive globular and nuclear star clusters. The same analytical arguments can be used to decide whether an arbitrary spherical stellar system is able to keep warm or hot interstellar material or not. These mass thresholds coincide with transition masses between pressure supported galaxies of different morphological types.  相似文献   

14.
In order to obtain the internal structure of a main-sequence star such as the Sun usually one has to solve the detailed structure equations numerically. This paper is an attempt to construct analytic models for the stellar nuclear energy generation. We give closed-form analytic results for the stellar luminosity and stellar neutrino emission rate when the radial matter density of the spherical star under consideration is linear. For the numerical estimation of the neutrino flux of a specified stellar nuclear reaction we take into account parameters of the standard solar model. The present paper gives for the first time the connection between stellar structure parameters and neutrino fluxes in an analytic stellar model.  相似文献   

15.
The equations of gas dynamics are solved, quasi-analytically by applying McVittie's method for spherical, cylindrical and plane configurations. The hypothesis of linear wave flow is applied and it is assumed that the final state of collapsing clouds is a hydrostatic equilibrium state, determined by complete polytropes. Complete analytical solutions are found when the generalized (to the three symmetries) Emden equation admits of analytical solutions. Otherwise the solutions are left in terms of the numerical solutions of the Emden equation. Numerical solutions to the Emden equation in the plane case are found and tabulated. A strong dependence of amplification, of density, pressure and temperature of the gas, on the symmetry is found. In addition, it is conclude that the flow remains subsonic, during the collapse, except toward the boundaries of the collapsing clouds.  相似文献   

16.
We use two elementary solutions of the integral equation connecting the density of a stellar system with its two-integral distribution function in order to construct simple distribution functions. Applications for axisymmetric, disk-like and spherical systems are given.  相似文献   

17.
We use the weighted integral form of spherical Bessel functions and introduce a new analytical set of complete and biorthogonal potential–density basis functions. The potential and density functions of the new set have finite central values and they fall off, respectively, similar to   r −(1+ l )  and   r −(4+ l )  at large radii, where l is the latitudinal quantum number of spherical harmonics. The lowest order term associated with   l = 0  is the perfect sphere of de Zeeuw. Our basis functions are intrinsically suitable for the modelling of three-dimensional, soft-centred stellar systems and they complement the basis sets of Clutton-Brock, Hernquist & Ostriker and Zhao. We test the performance of our functions by expanding the density and potential profiles of some spherical and oblate galaxy models.  相似文献   

18.
The aim of this paper is to explore a new parametric class of relativistic solutions to the Einstein field equations describing a spherically symmetric, static distribution of anisotropic fluid spheres to study the behavior of some of the cold stars in the setting of Karmarkar space-time continuum. We develop models of stellar objects for a range of parameter values of n and analyze their behavior through graphical representation. For each of these models, we have found that the metric potentials are well behaved inside the stellar interior and the physical parameters such as density, radial and tangential pressures, red-shift, radial speed, radial pressure density ratio and energy conditions display a continuous decrease from the center to surface of the stars whereas the mass, anisotropy, adiabatic indexes and compactification factor show a monotonous increase which imply that the proposed solution satisfy all the physical aspects of a realistic stellar objects. The stability of the solutions are verified by examining various stability aspects, viz., Zeldovich criteria, causality condition, Bondi condition, equilibrium condition (TOV-equation) and stable static criteria in connection to their cogency.  相似文献   

19.
We discuss contradictions existing in the literature in the problem on the stability of collisionless spherical stellar systems, which are the simplest anisotropic generalization of the well-known polytropic models. On the one hand, calculations of the growth rates within the framework of a linear stability theory and N-body simulations suggest that these systems should become stable when the parameter s characterizing the degree of anisotropy of the stellar velocity distribution becomes lower than some critical value s crit > 0. On the other hand, according to Palmer and Papaloizou, the growth rate should be nonzero up to the isotropic limit s = 0. Using our method of determining the eigenmodes of stellar systems, we show that even though the mode growth rates in weakly radially anisotropic systems of this type are nonzero, they are exponentially small, i.e., decrease as γ ∝ exp(−a/s) when s → 0. For slightly radially anisotropic systems with a finite lifetime, this actually implies stability.  相似文献   

20.
The physical characteristics radius, mass, mean density, gravitational potential and acceleration, gravitational and internal energy are presented with the aid of the gamma function forN-dimensional, radially-symmetric polytropes. The virial theorem with external pressure is derived in the relativistic limit, with Newtonian gravitation still valid. The gravitational energy of polytropes obeying the generalized Schuster—Emden integral is shown to be finite. Finiteness of mass and radius is discussed for the cases of practical interestN=1 (slab),N=2 (cylinder), andN=3 (sphere). Uniform contraction or expansion ofN-dimensional polytropes is considered in the last section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号