首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have derived the atmospheric parameters of the R CrB carbon star DY Per. The spectrum of DY Per near its maximum brightness was obtained using the 2.6-m ZTSh telescope of the Crimean Astrophysical Observatory, and has a resolution of about 1.74 Å per pixel. We compare the absolute observed and theoretical spectral energy distributions (SEDs) of DY Per for λλ 430–730 nm for the first time. The model atmospheres were computed using a code written by Ya.V. Pavlenko in the classical approximation, taking into account the main opacity sources in carbon-star atmospheres. The theoretical SEDs were computed using the list of atomic lines from the VALD database and the molecular line lists from CD-ROM No. 18 of Kurucz’s database. The estimated by spectral synthesis effective temperature of DY Per is in the range of 2900–3100 K, if we assume log g = 0. We find a metal deficiency in the atmosphere of DY Per. Quantitative estimates of the overall metallicity, carbon and nitrogen abundances, and the H/He ratio are somewhat uncertain: ?2 ≤ [Fe/H] ≤ ?0.5, 0.65 ≤ [C/Fe] ≤ 1.35, 0.0 ≤ [N/Fe] ≤ 0.8, 1/9 ≤ H/He ≤ 9/1. These high H/He values do not quite agree with qualitative observational estimates made by other authors. Our results confirm that DY Per is a unique stellar object. This is the coolest and possibly the most metal-poor of all known R CrB stars. We conclude that the large deficiencies of metals and hydrogen lead to [C/Fe] values in the atmosphere of DY Per characteristic of R CrB stars.  相似文献   

2.
The atmospheric abundances of 30 chemical elements in the halo star HD 221170 are analyzed by fitting synthetic spectra to observed spectra (i) with a resolution of 60 000 and signal-to-noise ratios of about 200 taken with the 1.93-m telescope of the Observatoire de Haute Provence and (ii) with a resolution of 35 000 and signal-to-noise ratios of more than 100 taken with the 2-m telescope of the Terskol Peak Observatory. The derived parameters of the stellar atmosphere are Teff=4475 K, log g=1.0, [Fe/H]=?2.03, Vmicro=1.7 km/s, and Vmacro=4 km/s. The parameters Teff, log g, [Fe/H], and Vmicro can be determined by analyzing the variations of the rms error of the mean iron abundance derived using different model atmospheres. The chemical composition of the star’s atmosphere is analyzed. The abundances of a total of 35 elements in HD 221170 have been derived in this paper and in previous studies. Overall, the abundances of elements lighter than praseodymium are consistent with the elemental abundances in the atmospheres of stars with similar metal deficits. Copper and manganese are underabundant by ?2.9 and ?2.6 dex, respectively, relative to the Sun (when the analysis includes the effects of hyperfine structure). Heavy r-process elements (starting from praseodymium) are overabundant compared to iron-group elements. This can be explained by an enrichment in r-process elements of the material from which the star was formed.  相似文献   

3.
The non-LTE potassium abundances in the atmospheres of 33 Galactic-disk stars are derived and the parameters of the atmospheres of 23 of the stars are determined. Neglecting departures from LTE results in a systematic overestimation of the potassium abundances and an increase in their dispersion, even for differential analyses relative to the Sun. The non-LTE corrections are significant ((?0.2)–(?0.6) dex) and depend on the surface gravities and effective temperatures of the stars. The mean potassium abundance for a sample of ten stars with [Fe/H]~0.0 is in agreement with the solar and meteoritic abundances (log ? (K)=5.12). As the stellar metallicity increases from [Fe/H]=(?1.0) to (0.2) dex, the [K/Fe] ratio decreases systematically from 0.3 dex to ?0.1 dex. The derived dependence [K/Fe]-[Fe/H] is in agreement with the results of published model calculations of the chemical evolution of the Galaxy. This indicates the dominance of explosive oxygen burning in massive type II supernovae during the synthesis of potassium in the Galactic disk.  相似文献   

4.
The chemical compositions of the atmospheres of six metal-poor stars are analyzed. Spectra with signal-to-noise ratios of no less than 100 and a resolution of R≈17 000 were obtained using the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The abundances of Li, O, α-process elements (Mg, Si, Ca, Ti), Na, K, Sc, iron-peak elements (Cr, Mn, Fe, Ni, Cu, Zn), and s-process elements (Y, Ba) are derived. The star G251-54 ([Fe/H]=?1.55, T eff=5541 K, logg=3.58) is deficient in some elements compared to both stars with similar metallicities and the Sun. The atmosphere of G251-54 has the following elemental abundances relative to iron: [O/Fe]=+0.47, [α/Fe]≈?0.3, [Na/Fe]=?0.60, [Sc/Fe]=?0.57, [Cr, Ni, Fe]≈0, [Zn/Fe]=+0.16, [Cu/Fe]=?0.66, [Y/Fe]=?0.70, and [Ba/Fe]=?1.35. The remaining five stars have metallicities in the range ?1.6<[Fe/H]相似文献   

5.
An analysis of high-resolution CCD spectra of the giant 25 Mon, which shows signs of metallicity, and the normal giant HR 7389 is presented. The derived effective temperatures, gravitational accelerations, and microturbulence velocities are Teff = 6700 K, log g = 3.24, and ξ t = 3.1 km/s for 25 Mon and Teff = 6630 K, log g = 3.71, and ξ t = 2.6 km/s for HR 7389. The abundances (log ε) of nine elements are determined: carbon, nitrogen, oxygen, sodium, silicon, calcium, iron, nickel, and barium. The derived excess carbon abundances are 0.23 dex for 25 Mon and 0.16 dex for HR 7389. 25 Mon displays a modest (0.08 dex) oxygen excess, with the oxygen excess for HR 7389 being somewhat higher (0.15 dex). The nitrogen abundance is probably no lower than the solar value for both stars. The abundances of iron, sodium, calcium (for HR 7389), barium, and nickel exceed the solar values by 0.22–0.40 dex for both stars. The highest excess (0.62 dex) is exhibited by the calcium abundance for 25 Mon. Silicon displays a nearly solar abundance in both stars—small deficits of ?0.03 dex and ?0.07 dex for 25 Mon and HR 7389, respectively. No fundamental differences in the elemental abundances were found in the atmospheres of 25 Mon and HR 7389. Based on their Teff and log g values, as well as theoretical calculations, A. Claret estimated the masses, radii, luminosities, and ages of 25 Mon (M/M = 2.45, log(R/R) = 0.79, log(L/L) = 1.85, t = 5.3 × 108 yr) and HR 7389 (M/M = 2.36, log(R/R) = 0.50, log(L/L) = 1.24, t = 4.6 × 108 yr), and also of the stars 20 Peg (M/M = 2.36, log(R/R) = 0.73, log(L/L) = 1.79, t = 4.9 × 108 yr) and 30 LMi (M/M = 2.47, log(R/R) = 0.73, log(L/L) = 1.88, t = 4.8 × 108 yr) studied by the author earlier.  相似文献   

6.
The profiles of the main molecular bands in the spectral-energy distributions (SEDs) of M stars have been calculated. The calculations of the individual band profiles were performed using the just-overlapping-lines approximation. Information about the oscillator strengths and the sources of the spectroscopic data for specific transitions between electronic levels of molecules is provided. The calculations of theoretical SEDs for M stars were performed using available lists of molecular lines for sources of bound-bound opacity in the atmospheres of oxygen-sequence stars. The observed SEDs of the oxygen-sequence red giant HD 148783 (30 Her) and the M dwarf 2MASS J22424129?2659272 are reproduced. The dependence of the calculated SEDs of the M giant on the adopted metallicity and carbon abundance is studied. The observed SEDs of HD 148783 and 2MASS J22424129?2659272 are described well by theoretical spectra calculated for model atmospheres with T eff/log g/[Fe/H] = 3250/ ? 0.4/0 and 3000/5.0/0, respectively.  相似文献   

7.
We analyze the formation of lines of neutral sulfur in the spectra of F-K stars taking into account the effects of deviations from local thermodynamical equilibrium (LTE). Our calculations were carried out for Kurucz model atmospheres with T eff = 5000–6500 K, log g = 2?4 and [Fe/H] = ?4?0, using a 65-level model of the SI atom. Deviations from LTE affect lines of different multiplets of the sulfur atom differently. Non-LTE corrections, which are relatively small (to ?0.10 dex) for the 6543–6557 Å lines, increase to ?0.26 dex for the 8694 Å line, and reach ?1.1 dex for the 9212–9237 Å IR triplet. The model of the atom was verified by modeling the sulfur lines of the studied multiplets in the spectra of the Sun, two main sequence stars, and two supergiants. Good consistency with the observed line profiles was obtained. Failure to take into account strong non-LTE-effects may explain the large sulfur excesses detected in stars with very low metal abundances.  相似文献   

8.
As part of our study of the components of the hierarchic quadruple system ADS 11061, we acquired spectroscopic observations of the binary 40 Dra. Echelle spectra showing the separation of the components’ lines were obtained in the spectral range 3700–9200 Å. Effective temperatures and surface gravities were derived for the components from BV photometry and the hydrogen-line profiles. The components of the 40 Dra system have parameters close to T eff a = 6420 K, log g a = 4.17, T eff b = 6300 K, and log g b = 4.20. We find the microturbulence velocity in the component atmospheres to be V t = 2.6 km/s. The abundances of iron, carbon, nitrogen, and oxygen in the atmospheres of both components are estimated to be log N(Fe)a = 7.50, log N(Fe)b = 7.46, log N(C)a = 8.39, log N(C)b = 8.45, log N(N)a = 8.12, log(N)b = 8.15, log N(O)a = 8.77, log N(O)b = 8.74.  相似文献   

9.
We have studied the star 30 LMi using high-dispersion CCD spectra and photographic observations. We estimate the star's effective temperature Teff=7210 K, gravity log g=3.34, and microturbulence velocity ξt=5.8 km/s. The carbon abundance, log ?(C)=8.57, is close to the solar value. Nitrogen (log ?(N)=7.81), oxygen (log ?(O)=8.76), and sulfur (log ?(S)=7.20) are slightly underabundant compared to the Sun, by ?0.16 dex, ?0.11 dex, and ?0.13 dex, respectively. A relatively large underabundance of ?0.27 dex was found for titanium (log ?(Ti)=4.75), whereas zinc shows an over-abundance by +0.21 dex (log ?(Zn)=4.81). Sodium (log ?(Na)=6.26), silicon (log ?(Si)=7.57), calcium (log ?(Ca)=6.38), chromium (log ?(Cr)=5.62), iron (log ?(Fe)=7.51), nickel (log ?(Ni)=6.34), and yttrium (log ?(Y)=2.34) exhibited abundances close to the solar values. We find no chemical anomalies characteristic of Am stars or δ Scuti stars in the spectrum of 30 LMi.  相似文献   

10.
A differential analysis of the magnesium abundances in 61 F-K dwarfs and subgiants with metallicities ?2.6<[Fe/H]<+0.2 is performed based on published observational data. Fundamental parameters for 36 stars are determined: T eff from V-K and V-R; logg from HIPPARCOS parallaxes, and [Fe/H] and ξt from Fe II lines. The computations allow for non-LTE effects in the formation of the Mg I lines. For most of the stars, the standard errors in the Mg abundances do not exceed 0.07 dex. The metallicity dependence of [Mg/Fe] is analyzed. Magnesium shows a constant overabundance relative to Fe of 0.46±0.06 dex for metallicities ?2.6<[Fe/H] $\overline {[Mg/Fe]} = + 0.22 dex$ ) compared to the [Mg/Fe] values for other stars with similar [Fe/H].  相似文献   

11.
We have studied the giant 20 Peg using high-resolution spectra. We derive the star’s effective temperature, T eff=6970 K, gravity, logg=3.35, and microturbulence velocity from FeI lines, ξt=2.70 km/s, and from NiI lines, ξt=2.45 km/s. The abundances of carbon, log?(C)=8.78, nitrogen, log?(N)=8.28, and silicon, log?(Si)=7.85, are enhanced compared to the solar values by 0.23, 0.31, and 0.30 dex, respectively. The abundances of oxygen, log?(O)=8.83, sodium, log?(Na)=6.37, and sulfur, log?(S)=7.33, are nearly solar. Calcium and nickel show normal abundances, log?(Ca)=6.44 and log?(Ni)=6.32. Iron log?(Fe)=7.63 and yttrium log?(Y)=2.41 are only slightly overabundant compared to the solar values (by 0.13 and 0.17 dex). We find a rather large (0.95 dex) overabundance of barium log?(Ba)=3.08.  相似文献   

12.
We have used high-resolution spectra to study the giants 15 Ori and 22 ? Sex. The effective temperature T eff = 7060 K, gravity log g = 3.16, and microturbulence velocity ξ t = 3.5 km/s were determined for 15 Ori, with T eff = 7350 K and log g = 3.90 for 22 ? Sex (the microturbulence velocity for 22 ? Sex was assumed to be ξ t = 2.7 km/s). We estimated the abundances of C, N, O, Na, Si, Ca, Fe, and Ba (N and Ba, for 15 Ori only). The abundances of carbon, iron, and oxygen in 22 ? Sex are higher than the solar values by +0.31 dex, +0.33 dex, and +0.18 dex, respectively, while the calcium abundance is ?0.19 dex below the solar level. For 15 Ori, we find a slight carbon excess (+0.19 dex), a slight nitrogen deficiency (?0.13 dex), and a considerable deficiency of silicon (?0.42 dex). The abundances of the remaining elements in both stars are near-solar. We find no substantial differences between the abundances derived for 15 Ori and 22 ? Sex and the results of earlier studies of giants by both ourselves and Erspamer and North. A comparison of the atmospheric elemental abundances of giants and δ Scuti stars indicates that the abundances of some lighter elements (oxygen, sodium, silicon, and possibly nitrogen) are somewhat lower for δ Scuti stars than for A-F giants. We determined the masses, radii, luminosities, and ages for 15 Ori and 22 ? Sex.  相似文献   

13.
We have used high-resolution spectra to study the chemical composition of HR 1512, a star with effective temperature T eff = 15 200 K, atmospheric gravity log g = 3.52, microturbulence parameter V t = 1.5 km/s, and rotation rate v sin i = 17 km s?1. We confirm the presence of a helium deficiency (?0.6 dex), indicating that HR 1512 is a helium-weak star. Its considerable phosphorus excess (1.6 dex) testifies that the star belongs to the PGa subtype. We suggest that the He and P abundances increase with height; i.e., that there is stratification of He and P in the star’s atmosphere. Among the CNO elements, nitrogen demonstrates an underabundance of ?0.4 dex, while the abundances of carbon and oxygen are solar. Deficits of about ?0.5 or ?0.6 dex were also found for Mg, Si, and S. A neon excess of 0.4 dex was derived from our non-LTE analysis of NeI lines. The largest excess among the iron-peak elements (Cr, Mn, Fe, and Ni) is 0.6 dex, for manganese; the abundances of chromium and nickel display excesses of 0.5 and 0.3 dex, respectively, while the iron abundance is almost normal. The chemical anomalies of HR 1512 generally agree with those for mercury-manganese stars. This supports the hypothesis that PGa stars represent an extension of HgMn stars to higher temperatures.  相似文献   

14.
The LTE lithium abundances, logN (Li), have been determined for the atmospheres of the four carbon giants AQ And, HK Lyr, UX Dra, and WZ Cas, applying the synthetic-spectrum technique to the LiI λ670.8 nm resonance doublet. We used estimates of the effective temperatures T eff, metallicities, elemental abundances, and carbon-isotope ratios for these stars from the literature [12C/13C]. The resulting lithium abundances depend significantly on the adopted T eff, so that we can find each star’s range of possible logN(Li) values for a given range of effective temperatures (ΔT eff = 200−300 K). The uncertainty in the derived logN(Li) values is 1.3 for AQ And and UX Dra, 0.5 for HK Lyr, and 0.8 for WZ Cas. Our most probable logN(Li) values (or ranges) are −1.25 for AQ And, −1.2 for HK Lyr, −1.0 ≤ logN(Li) ≤ +0.3 for UX Dra, and 4.3 ≤ logN(Li) ≤ 4.8 for WZ Cas. The derived C/O ratios for the stellar atmospheres also depend on T eff. Possible uncertainties in other atmospheric parameters do not change logN(Li) by more than 0.2.  相似文献   

15.
The non-LTE formation of KI lines in the spectra of A-K stars is analyzed. The computations are based on a 36-level model of the neutral potassium atom for blanketed LTE Kurucz model atmospheres with T eff=4000–10000 K, logg=0.0–4.5, and [M/H]=(0.0)–(?2.0). The KI atoms in the atmospheres of these stars are in states of moderate and strong “over-recombination.” A number of atomic parameters are refined using the profiles and equivalent widths of five lines in the solar spectrum. The classical van der Waals damping constants must be increased by factors of 2–60 to fit the observed profiles. The non-LTE solar potassium abundance—logε (K)=5.14—corresponds to the meteoritic abundance. Non-LTE corrections to the potassium abundance are important and equal to ?0.4...?0.7 dex for the λ7699 Å line and ?0.15...?0.3 dex for the λλ12522, 12432, and 11769 Å lines.  相似文献   

16.
We have performed a detailed statistical-equilibrium analysis based on a 49-level model of the magnesium atom for the atmospheres of stars of various spectral types: T eff=4500–12000 K, logg=0.0–4.5, and [M/H]=0 to ?3. In the atmospheres of stars with T eff>5500 K, deviations from LTE for Mg I are due to photoionization by ultraviolet radiation from the 3p level; i.e., neutral magnesium is in a state of “superionization.” When T eff<5500 K, the populations of the Mg I levels differ from their LTE values due to radiative processes in bound-bound transitions. We analyzed Mg I lines in the solar spectrum in order to empirically refine certain atomic parameters (the van der Waals broadening constant C 6 and cross sections for photoionization and collisional interactions with hydrogen atoms) and the magnesium abundance in the solar atmosphere. We studied non-LTE effects for five Mg I lines for a wide range of stellar parameters. In the case of dwarfs and subdwarfs, the magnitude of non-LTE corrections to magnesium abundances does not exceed 0.1 dex for the λλ 4571, 4703, 5528, and 5711 Å lines but can be as large as ±0.2 dex for the λλ 3829–3838, 5172, and 5183 Å lines. The non-LTE corrections for giants and supergiants do not exceed 0.15 dex for the λλ 4571 and 5711 Å lines but can reach ±0.20 dex and even more for the λλ 4703, 5528, 3829–3838, 5172, and 5183 Å lines.  相似文献   

17.
We obtained speckle interferometric and spectroscopic observations of the system 41 Dra during its periastron passage in 2001. The components’ lines are resolved in the spectral interval 3700–9200 Å. The observed wavelength dependence of the brightness difference between the components is used to estimate the B-V indices separately for each of the components: B-V = 0.511 for component a and B-V = 0.502 for component b. We derived improved effective temperatures of the components from their B-V values and hydrogen-line profiles. The observations can be described with the parameters for the components T eff a = 6370 K, log ga = 4.05 and T eff b = 6410 K, log gb = 4.20. The iron, carbon, nitrogen, and oxygen abundances in the atmospheres of the components are log N(Fe)a = 7.55, log N(Fe)b = 7.60, log N(C)a = 8.52, log N(C)b = 8.58, log N(N)a = 8.05, log N(N)b = 7.99, log N(O)a = 8.73, log N(O)b = 8.76.  相似文献   

18.
We used high-resolution echelle spectra acquired with the 1.5-m Russian-Turkish Telescope to determine the fundamental atmospheric parameters and abundances of 30 chemical elements for three ?? Scuti stars: AOCVn, CP Boo, and KWAur. The chemical compositions we find for these stars are similar to those for Am-star atmospheres, though some anomalies of up to 0.6?C0.7 dex are observed for light and heavy elements. We consider the effect of the adopted stellar parameters (effective temperature, log g, microturbulent velocity) and the amplitude of pulsational variations on the derived elemental abundances.  相似文献   

19.
The evolutionary status of the bright peculiar carbon giant TU Gemis fairly uncertain. The possibility that this is aCH star—aGalactic halo star with characteristic chemical-composition anomalies—is considered. Unfortunately, data on the atmospheric chemical composition of TUGem are relatively few and are ambiguous. The results of an analysis of a moderate-resolution optical and near-infrared spectrum of TU Gem obtained on the 2-m telescope of Terskol Peak Observatory (Northern Caucasus) is presented. The atmospheric parameters of TU Gem T eff = 3100 K, C/O = 1.10, and [N/Fe] = 0.0 for the derived metallicity [Fe/H] = 0.0 are taken from [1]. The abundances of Na, Mg, Ca, Ti, and Cr are estimated to be normal or slightly enhanced, and the lithium abundance is log N(Li) = +0.1. The abundances of s-process elements are substantially enhanced in the atmosphere of TU Gem, namely, [s/Fe] ≈ 2, for both light and heavy s-process elements. The range of uncertainty in [Fe/H] is 0.0?0.3, and the uncertainties in other estimates are Δ[M/Fe]≈ ±0.3 and Δ[s/Fe] = ±0.5. The results show that TU Gem is an anomalous carbon giant, but not a CH star.  相似文献   

20.
The paper examines the statistical equilibrium of Na I in stellar atmospheres with a wide range of parameters: T eff=4000?12500 K, logg=0.0?4.5, and heavy element content [A] from 0.5 to ?4.0. The effect of the “overrecombination” of Na I (i.e., excess relative to the equilibrium number density of Na I) is present over the entire range of parameters considered, and increases with T eff and luminosity. Na I lines are stronger than in the LTE case, so that non-LTE corrections to the sodium abundance, ΔNLTE, are negative. Eight Na I lines commonly employed in abundance analyses are used to construct the dependences of the non-LTE corrections on T eff, logg, and metallicity. The non-LTE corrections are small only for the Na I λλ615.4, 616.0 nm lines in main-sequence stars: |ΔNLTE| ≤0.08 dex. In all other cases, ΔNLTE depends strongly on T eff and logg, and a non-LTE treatment must be applied if the sodium abundance is to be determined with an accuracy no worse than 0.1 dex. The profiles of solar Na I lines are analyzed in order to empirically refine two types of atomic parameters required for the subsequent analysis of the stellar spectra. In the solar atmosphere, inelastic collisions with hydrogen atoms influence the statistical equilibrium of Na I only weakly, and the classical Unsold formula underestimates the van der Waals constant C 6. The empirical correction ΔlogC 6 is from 0.6 to 2 for various Na I lines. The sodium abundance in the solar atmosphere is determined based on line-profile analyses, yielding different results depending on whether the model atmospheres of Kurucz (log?Na=6.20±0.02) or Holweger and Muller (log?Na=6.28±0.03) are applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号