首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
《Ocean Modelling》2009,26(3-4):120-131
Observations of the western Arabian Sea over the last decade have revealed a rich filamentary eddy structure, with large horizontal SST gradients in the ocean, developing in response to the southwest monsoon winds. This summertime oceanic condition triggers an intense mesoscale coupled interaction, whose overall influence on the longer-term properties of this ocean remains uncertain. In this study, a high-resolution regional coupled model is employed to explore this feedback effect on the long-term dynamical and thermodynamical structure of the ocean.The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pumping velocities at the scale of the cold filaments, whose magnitude is the order of 1 m/day in both the model and observations. This additional Ekman-driven velocity, induced by the wind-eddy interaction, accounts for approximately 10–20% of oceanic vertical velocity of the cold filaments. This implies that Ekman pumping arising from the mesoscale coupled feedback makes a non-trivial contribution to the vertical structure of the upper ocean and the evolution of mesoscale eddies, with obvious implications for marine ecosystem and biogeochemical variability.Furthermore, SST features associated with cold filaments substantially reduce the latent heat loss. The long-term latent heat flux change due to eddies in the model is approximately 10–15 W/m2 over the cold filaments, which is consistent with previous estimates based on short-term in situ measurements. Given the shallow mixed layer, this additional surface heat flux warms the cold filament at the rate of 0.3–0.4 °C/month over a season with strong eddy activity, and 0.1–0.2 °C/month over the 12-year mean, rendering overall low-frequency modulation of SST feasible. This long-term mixed layer heating by the surface flux is approximately ±10% of the lateral heat flux by the eddies, yet it can be comparable to the vertical heat flux. Potential dynamic and thermodynamic impacts of this observed air–sea interaction on the monsoons and regional climate are yet to be quantified given the strong correlation between the Somalia upwelling SST and the Indian summer monsoons.  相似文献   

3.
Both horizontal and vertical heat exchanges and feedbacks between air temperature and anthropogenic heat fluxes significantly affect the characteristics of the urban heat island (UHI). The UHI intensity depends, in particular, on the ratio between the scales LA (area of anthropogenic forcing) and Lγ (distance passed by an air particle of the oncoming stably stratified flow before its temperature approaches air temperature within the UHI). Both advection and feedback effects may be estimated based on the equation for the local heat balance of the underlying surface. In this case, heat advection is taken into account by calculating temperatures individually for the atmospheric boundary layer and the surface of the urban canopy layer. The estimates show that the asymptotics of strong advection is more characteristic of a typical city. However, under weak winds, with consideration for the feedback between air temperature and anthropogenic heat flux, some deviations from this asymptotics are probable.  相似文献   

4.
The problem of stationary vertical distribution of saturated moist air thermodynamic parameters that takes place, for example, in an eyewall cloud of a tropical cyclone is considered. Based on these distributions, the cloud-growth dynamics problem is also considered. The heat and moisture fluxes from the ocean surface are determined by the wind and temperature difference and subcloud layer condition and last after the beginning of cloud formation. They change the condition of both the cloud and the subcloud layer. The coexistence and interaction of the two different regions require additional conditions. We assume continuity of the temperature and humidity profiles at the lower cloud boundary. The problem of cloud formation over the warmer ocean with account for water-phase transformations is considered in the present study. The cloud boundaries (the upper and the lower) in the process are determined and the temperature and moisture profiles within the cloud are also investigated. The lower boundary dipping is determined while taking the subcloud moisture into account. An approximate analytical model of these processes is formulated, and the corresponding equations are solved numerically. Approximate equations govern the vertical cloud structure well.  相似文献   

5.
Observations of the western Arabian Sea over the last decade have revealed a rich filamentary eddy structure, with large horizontal SST gradients in the ocean, developing in response to the southwest monsoon winds. This summertime oceanic condition triggers an intense mesoscale coupled interaction, whose overall influence on the longer-term properties of this ocean remains uncertain. In this study, a high-resolution regional coupled model is employed to explore this feedback effect on the long-term dynamical and thermodynamical structure of the ocean.The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pumping velocities at the scale of the cold filaments, whose magnitude is the order of 1 m/day in both the model and observations. This additional Ekman-driven velocity, induced by the wind-eddy interaction, accounts for approximately 10–20% of oceanic vertical velocity of the cold filaments. This implies that Ekman pumping arising from the mesoscale coupled feedback makes a non-trivial contribution to the vertical structure of the upper ocean and the evolution of mesoscale eddies, with obvious implications for marine ecosystem and biogeochemical variability.Furthermore, SST features associated with cold filaments substantially reduce the latent heat loss. The long-term latent heat flux change due to eddies in the model is approximately 10–15 W/m2 over the cold filaments, which is consistent with previous estimates based on short-term in situ measurements. Given the shallow mixed layer, this additional surface heat flux warms the cold filament at the rate of 0.3–0.4 °C/month over a season with strong eddy activity, and 0.1–0.2 °C/month over the 12-year mean, rendering overall low-frequency modulation of SST feasible. This long-term mixed layer heating by the surface flux is approximately ±10% of the lateral heat flux by the eddies, yet it can be comparable to the vertical heat flux. Potential dynamic and thermodynamic impacts of this observed air–sea interaction on the monsoons and regional climate are yet to be quantified given the strong correlation between the Somalia upwelling SST and the Indian summer monsoons.  相似文献   

6.
We perform the experimental verification of the applicability of the theory of similarity to the wave boundary layer and the assessment of wave-induced perturbations of the air flow depending on various conditions of stratification of the atmosphere and the state of the sea. The measurements were carried out from a stationary platform located in the coastal part of the Black Sea. The experimental procedure is based on the simultaneous measurements of the profile and fluctuations of the wind speed at 5–6 levels in the 1.3–21-m layer, the elevations of the sea surface, the directions of waves and winds, and the mean gradients of temperature and humidity of air. The structure of the boundary layer in the region of measurements depends on the direction of the wind. For weak and moderate onshore winds (< 9 m/sec), the approximate balance is preserved between the production and dissipation of turbulent energy in the cases of unstable and neutral stratification. On the average, the estimates of friction velocity according to the profiles are higher than the dissipative estimates by 10% mainly due to the deficiency of dissipation near the surface. For the offshore wind, the structure of the boundary layer abruptly changes and is determined not by the local parameters but by strong turbulent eddies formed over the dry land. The intensity of low-frequency turbulent fluctuations and the gradient of wind velocity near the surface in the coastal zone are 1.5–2 times higher than for the open sea. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 42–61, May–June, 2007.  相似文献   

7.
The surroundings of the Bay of Bengal (BoB) suffer a lot from the extreme rainfall events during Indian summer monsoon (ISM). Previous studies have proved that the sea-air interaction is an important factor for the monsoonal precipitation. Using the 6th Coupled Modol Inter-comparison Project (CMIP6) models, this study examined the biases of surface heat flux, which is the main connection between atmosphere and ocean. Results show that although CMIP6 have a better simulation of intraseasonal sea surface temperature (SST) anomalies over BoB than the previous ones, the “atmospheric blockage” still delays the response of latent heat flux to the oceanic forcing. Specifically, during the increment of positive latent heat flux in CMIP6, the negative contribution from wind effects covers most of the positive contribution from humidity effects, due to the underestimate of humidity effects. Further diagnostic analysis denote that the surface air humidity has a quarter of a phase ahead of warm SST in observation, but gets wet along with the warm SST accordingly in most CMIP6 models. As a result, the simulated transfer of intraseasonal moisture flux is hindered between ocean and atmosphere. Therefore, as a bridge between both sides, the atmospheric boundary layer is essential for a better sea-air coupled simulation, especially when the atmospheric and the oceanic variabilities involved in a climate model becomes increasingly sophisticated. The surface air humidity and boundary layer processes require more attention as well as better simulations.  相似文献   

8.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   

9.
20世纪90年代后期南海上层海温变化趋势的转折   总被引:1,自引:1,他引:0  
In this paper, the interdecadal variability of upper-ocean temperature in the South China Sea(SCS) is investigated based on several objectively analyzed data sets and two reanalysis data sets. The trends of the SCS sea surface temperature(SST) have changed from warming to cooling since the late 1990 s. A heat budget analysis suggests that the warming of the surface mixed layer during 1984–1999 is primarily attributed to the horizontal heat advection and the decrease of upward long wave radiation, with the net surface heat flux playing a damping role due to the increase of upward latent and sensible heat fluxes. On the other hand, the cooling of the surface mixed layer during 2000–2009 is broadly controlled by net surface heat flux, with the radiation flux playing the dominant role. A possible mechanism is explored that the variation of a sea level pressure(SLP) over the North Pacific Ocean may change the prevailing winds over the SCS, which contributes to the change of the SST in the SCS through the horizontal heat advection and heat fluxes.  相似文献   

10.
Observations of multidecadal variability in sea surface temperature (SST), surface air temperature and winds over the Southern Hemisphere are presented and an ocean general circulation model applied towards investigating links between the SST variability and that of the overlying atmosphere. The results suggest that the dynamical effect of the wind stress anomalies is significant mainly in the neighbourhood of the western boundary currents and their outflows across the mid‐latitudes of each Southern Hemisphere basin (more so in the South Indian and South Atlantic than in the South Pacific Ocean) and in the equatorial upwelling zones. Over most of the subtropics to mid‐latitudes of the Southern Hemisphere oceans, changes in net surface heat flux (particularly in latent heat) appear to be more important for the SST variability than dynamical effects. Implications of these results for modelling and understanding low frequency climate variability in the Southern Hemisphere as well as possible links with mechanisms of decadal/interdecadal variability in the Northern Hemisphere are discussed.  相似文献   

11.
本文利用我国极地数值天气预报系统和美国南极中尺度预报系统的存档数据,分析了Dome A至普里兹湾沿岸地区下降风风场的时空分布和大气质量通量,给出了该地区下降风的基本特点。该地区下降风受南极冰盖地形影响强烈,艾默里冰架西侧等陡峭地区风速总体较大;下降风随季节变化较大,冬季的下降风较强。强下降风在前进过程中有绝热增温现象,并给艾默里冰架西部带来近表层升温。下降风风速最大处位于地面以上约100~200 m高度,风速较大地区的下降风在垂直方向上分布较为深厚。下降风在普里兹湾沿岸的表层大气质量通量在时空分布上极不均匀,艾默里冰架西侧的下降风气流较强时,普里兹湾海域有较多的中尺度气旋活动。下降风引发普里兹湾中尺度气旋旋生的过程值得关注,需进一步研究下降风引发中尺度气旋的机理。  相似文献   

12.
Vertical fine distributions of suspended matter and some chemical compositions in seawater were measured in the layer near the seabed. Distributions of organic suspended matter were almost uniform throughout the layer, but others were anomalous. However, with respect to their peak heights and distribution patterns, the tendency of profiles was the same on the whole. We suggested that these anomalous distributions were primarily caused by the destruction of the large flocculent particle on the seabed and by upward diffusion of disintegrated particles. The similarity of profiles between chemical compositions of dissolved substances and suspended matter of non-dissolved substances, was explained by assuming that pore water in the large particle was simultaneously transported with disintegrated particles after the destruction. An equation for the vertical distribution of suspended matter near the seabed was derived, provided that the rate of destruction of large flocculent particle was in proportion to the current velocity on the seabed. The equation represented the existence of the anomalous distribution, which was continuously changing its pattern. Measurements of vertical profiles of suspended matter showed almost the same tendency with the theory. From the characteristics of the theoretical equation, it was expected that the eddy diffusivity near the seabed was 1050 cm2/sec.  相似文献   

13.
Suspended matter regime in the Yellow Sea   总被引:3,自引:0,他引:3  
Winter and summer oceanographic conditions in the Yellow Sea produce distinctly different distributions and compositions of suspended particles within the water column. During the winter, strong northwest winds cool and mix the local water column and generate surface waves which resuspend bottom sediment in the north Yellow Sea and in the shoal regions of the western Yellow Sea near Jiangsu Province, and transport it southwards. Wintertime suspended particle concentrations in nearbottom waters can exceed 500 mg/l in nearshore areas and 20 mg/l in offshore waters.During the summer, light southerly winds and a strongly stratified water column localize the distribution of resuspended sediments. Nearbottom concentrations of suspended particulates are generally less than 10 mg/l. Nearsurface concentrations generally are not dissimilar from those seen during the winter, but the particles are primarily biogenic rather than resuspended mineral grains.  相似文献   

14.
COARE算法估算海气界面热通量的个例对比分析   总被引:2,自引:1,他引:1  
本文先对NCEP分析风、QSCAT/NCEP混合风、MM5中尺度模式分析风场进行了比对分析,发现具有高分辨率的QSCAT/NCEP混合风资料给出的高风速数值较好,但给出的高风速开始时间相对较早;NCEP分析风资料给出的高风速数值明显偏小;MM5分析风场较为可信,只不过模拟的高风速数值还是相对偏小.使用COARE算法(版本3.0)计算了四种资料情况下的渤、黄海海域一次冷空气大风过程的海表面湍流热通量,并与MM5诊断分析结果进行了对比分析.结果发现相同资料情况下,MM5结果跟COARE算法所算海气热通量(包括感热和潜热)在区域分布和时间变化规律上均较为一致,中、低风速情况下,结果比较接近;但是高风速情况下两者差异显著.  相似文献   

15.
New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and ECMWF air temperature from 2004 to 2014. The 55 moored buoys are used to validate them by using the 30 min and 25 km collocation window. Furthermore, the objectively analyzed air-sea heat fluxes(OAFlux) products and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 2(NCEP2) products are also used for global comparisons. The mean biases of sensible and latent heat fluxes between Wind Sat flux results and buoy flux data are –0.39 and –8.09 W/m~2, respectively. In addition, the rootmean-square(RMS) errors of the sensible and latent heat fluxes between them are 5.53 and 24.69 W/m~2,respectively. The RMS errors of sensible and latent heat fluxes are observed to gradually increase with an increasing buoy wind speed. The difference shows different characteristics with an increasing sea surface temperature, air humidity, and air temperature. The zonal average latent fluxes have some high regions which are mainly located in the trade wind zones where strong winds carry dry air in January, and the maximum value centers are found in the eastern waters of Japan and on the US east coast. Overall, the seasonal variability is pronounced in the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean. The three sensible and latent heat fluxes have similar latitudinal dependencies; however, some differences are found in some local regions.  相似文献   

16.
A coupled air–sea general circulation model is used to simulate the global circulation. Different parameterizations of lateral mixing in the ocean by eddies, horizontal, isopycnal, and isopycnal plus eddy advective flux, are compared from the perspective of water mass transformation in the Southern Ocean. The different mixing physics imply different buoyancy equilibria in the surface mixed layer, different transformations, and therefore a variety of meridional overturning streamfunctions. The coupled‐model approach avoids strong artificial water mass transformation associated with relaxation to prescribed mixed layer conditions. Instead, transformation results from the more physical non‐local, nonlinear interdependence of sea‐surface temperature, air–sea fluxes, and circulation in the model's atmosphere and ocean. The development of a stronger mid‐depth circulation cell and associated upwelling when eddy fluxes are present, is examined. The strength of overturning is diagnosed in density coordinates using the transformation framework.  相似文献   

17.
Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Channel of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near-water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The measurements showed that the logarithmic part of the velocity profile of the air flow in the channel was observed in the immediate vicinity from the water surface (at a distance of 30 mm) and could be detected only using remote methods (PIV). According to the measured velocity profiles, dependences of aerodynamic drag factors of the water surface on the wind velocity at a height of 10 m were retrieved; they were compared with results of contact measurements carried out earlier on the same setup. It is shown that they agree with an accuracy of up to 20%; at moderate and strong wind velocities the coincidence falls within the experimental accuracy.  相似文献   

18.
林龙  赵进平 《海洋学报》2018,40(11):23-32
雪热传导系数是海冰质量平衡过程中的重要物理参数,决定了穿透海冰的热传导通量。北冰洋海冰质量平衡浮标观测获得多年冰上冬季温度链剖面可以明显地区分冰雪界面。本文考虑到冰雪界面处温度随时间变化,再根据冰雪界面热传导通量连续假定,提出了新的雪热传导系数计算方法。受不同环境因素影响,多年冰上各个浮标的雪热传导系数在0.23~0.41 W/(m·K)之间,均值为(0.32±0.08) W/(m·K)。北冰洋多年冰上冬季穿过海冰的热传导通量最大发生在11月至翌年3月,约14~16 W/m2。结冰季节,来自海冰自身降温的热量对穿过海冰向大气传输的热量贡献逐月减少,从9月100%减小到12月的35%,翌年的1月至3月稳定在10%左右。夏季,短波辐射通能量通过热传导自上而下加热海冰,海冰上层温度高于下层,热量传播方向与冬季反向,往海冰内部传递。直到9月短波辐射完全消失,气温下降,热量再次转变为自下往上传递。从冰底热传导来看,夏季出现海冰向冰水界面传递热量现象。由于雪较好的绝热性,冰上覆雪极大地削弱了海冰上层热传导通量,从而减缓了秋冬季节的结冰速度。尽管受雪厚影响,多年冰上层热传导通量与气温依旧具有很好的线性关系,气温每降低1℃,热传导通量增加约0.59 W/m2。  相似文献   

19.
This study investigates atmospheric responses to the directions of surface wind over the Kuroshio front in the East China Sea, using wintertime satellite-derived data sets. Composite maps of sea surface temperature, wind speed, precipitation, turbulent heat flux, surface wind divergence, and the curl of wind vectors above the atmospheric boundary layer are depicted based on the classification of intense northeasterly (along the front) and northwesterly (across the front) winds over the East China Sea. When northeasterly winds prevail, considerable precipitation occurs on the offshore side of the Kuroshio front, in contrast to periods when northwesterly winds prevail. First, the northeasterly winds strengthen above the front because of the downward transfer of momentum from the fast-moving air at higher levels and/or an adjustment of sea level pressure over the oceanic front, although the process by which the influence of the Kuroshio penetrates beyond the marine atmospheric boundary layer remains unclear. Second, a cyclonic vortex forms above the marine atmospheric boundary layer (at 850-hPa height) on the offshore side of the front, and thereafter, surface wind convergence via Ekman suction (hence, enhanced precipitation) occurs over the East China Sea shelf breaks. The northeasterly winds blow over the East China Sea when the Aleutian Low retreats to the east and when high sea level pressure covers the northern Sea of Japan.  相似文献   

20.
The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using the in situ data collected by ship from 2006 to 2007. The spatial distribution of LHF in the NSCS is mostly controlled by wind in summer and autumn owing to the lower vertical gradient of air humidity, but is influenced by both wind and near-surface air humidity vertical gradient in spring and winter. The largest area-averaged LHF is in autumn, with the value of 197.25 W/m 2 , followed by that in winter; the third and the forth are in summer and spring, respectively. The net heat flux is positive in spring and summer, so the NSCS absorbs heat; and the solar shortwave radiation plays the most important role in the surface heat budget. In autumn and winter, the net heat flux is negative in most of the observation region, so the NSCS loses heat; and the LHF plays the most important role in the surface heat budget. The net heating is mainly a result of the offsetting between heating due to the shortwave radiation and cooling due to the LHF and the upward (outgoing) long wave radiation, since the role of SHF is negligible. The ratio of the magnitudes of the three terms (shortwave radiation to LHF to long-wave radiation) averaged over the entire year is roughly 3:2:1, and the role of SHF is the smallest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号