首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have studied the effect of the flow in the accretion disk. The specific angular momentum of the disk is assumed to be constant and the polytropic relation is used. We have solved the structure of the disk and the flow patterns of the irrotational perfect fluid.As far as the obtained results are concerned, the flow does not affect the shape of the configuration in the bulk of the disk, although the flow velocity reaches even a half of the sound velocity at the inner edge of the disk. Therefore, in order to study accretion disk models with the moderate mass accretion rate—i.e.,
  相似文献   

2.
Pulsation period changes in Mira type variables are investigated using the stellar evolution and nonlinear stellar pulsation calculations. We considered the evolutionary sequence of stellar models with initial mass \({M_{ZAMS}} = \;3{M_ \odot }\) and population I composition. Pulsations of stars in the early stage of the asymptotic giant branch are shown to be due to instability of the fundamental mode. In the later stage of evolution when the helium shell source becomes thermally unstable the stellar oscillations occur in either the fundamental mode (for the stellar luminosuty \(L < 5.4 \times {10^3}{L_ \odot }\)) or the first overtone (\(L > 7 \times {10^3}{L_ \odot }\)). Excitation of pulsations is due to the κ-mechanism in the hydrogen ionization zone. Stars with intermediate luminosities \(5.4 \times {10^3}{L_ \odot } < L < 7 \times {10^3}{L_ \odot }\) were found to be stable against radial oscillations. The pulsation period was determined as a function of evolutionary time and period change rates \(\dot \Pi \) were evaluated for the first ten helium flashes. The period change rate becomes the largest in absolute value \((\dot \Pi /\Pi \approx - {10^{ - 2}}y{r^{ - 1}})\) between the helium flash and the maximum of the stellar luminosity. Period changes with rate \(\left| {\dot \Pi /\Pi } \right| \geqslant - {10^{ - 3}}y{r^{ - 1}}\) take place during ≈500 yr, that is nearly one hundredth of the interval between helium flashes.  相似文献   

3.
We propose to the NSFA (the IAU Working Group on Numerical Standards for Fundamental Astronomy) the following representative values and realistic uncertainties for the masses of the three largest asteroids (Ceres, Pallas, Vesta), to be used as the current best estimates:
Unlike the values previously adopted in the Astronomical Almanac, these are consistent with nearly all of the twenty or so modern accurate determinations from various authors. We also have proposed the following values for the Moon-Earth mass ratio and the astronomical unit in meters obtained from the ephemeris improvement processes at JPL in Pasadena and at IAA RAS in St.Petersburg: M Moon/M Earth =  0.0123000371(4) and AU =  149597870700(3) m. The numerical value of the AU in meters is identical in both the TDB-based and the TCB-based systems of units if one uses the conversion proposed by Irwin and Fukushima, Brumberg and Groten, Brumberg and Simon.  相似文献   

4.
On the basis of a globular cluster study a crude estimate of the total mass of the galactic halo within 20 kpc from the centre is done. It gives a minimal halo mass of the order of , yielding possibilities for a mass as large as . The content of the interstellar matter in the halo is estimated too. It is found that the gas content is a few percents the minimal mass, the gas temperature is very high — about 1×106 K, the magnetic field weak — about 0.25 nT. A weak nonthermal radio emission might be expected from such a halo.  相似文献   

5.
If fluctuations in the density are neglected, the large-scale, axisymmetric azimuthal momentum equation for the solar convection zone (SCZ) contains only the velocity correlations and where u are the turbulent convective velocities and the brackets denote a large-scale average. The angular velocity, , and meridional motions are expanded in Legendre polynomials and in these expansions only the two leading terms are retained (for example, where is the polar angle). Per hemisphere, the meridional circulation is, in consequence, the superposition of two flows, characterized by one, and two cells in latitude respectively. Two equations can be derived from the azimuthal momentum equation. The first one expresses the conservation of angular momentum and essentially determines the stream function of the one-cell flow in terms of : the convective motions feed angular momentum to the inner regions of the SCZ and in the steady state a meridional flow must be present to remove this angular momentum. The second equation contains also the integral indicative of a transport of angular momentum towards the equator.With the help of a formalism developed earlier we evaluate, for solid body rotation, the velocity correlations and for several values of an arbitrary parameter, D, left unspecified by the theory. The most striking result of these calculations is the increase of with D. Next we calculate the turbulent viscosity coefficients defined by whereC ro 0 and C o 0 are the velocity correlations for solid body rotation. In these calculations it was assumed that 2 was a linear function of r. The arbitrary parameter D was chosen so that the meridional flow vanishes at the surface for the rotation laws specified below. The coefficients v ro i and v 0o i that allow for the calculation of C ro and C 0o for any specified rotation law (with the proviso that 2 be linear) are the turbulent viscosity coefficients. These coefficients comply well with intuitive expectations: v ro 1 and –v 0o 3 are the largest in each group, and v 0o 3 is negative.The equations for the meridional flow were first solved with 0 and 2 two linear functions of r ( 0 1 = – 2 × 10 –12 cm –1) and ( 2 1 = – 6 × 10 12 cm –1). The corresponding angular velocity increases slightly inwards at the poles and decreases at the equator in broad agreement with heliosismic observations. The computed meridional motions are far too large ( 150m s–1). Reasonable values for the meridional motions can only be obtained if o (and in consequence ), increase sharply with depth below the surface. The calculated meridional motion at the surface consists of a weak equatorward flow for gq < 29° and of a stronger poleward flow for > 29°.In the Sun, the Taylor-Proudman balance (the Coriolis force is balanced by the pressure gradient), must be altered to include the buoyancy force. The consequences of this modification are far reaching: is not required, now, to be constant along cylinders. Instead, the latitudinal dependence of the superadiabatic gradient is determined by the rotation law. For the above rotation laws, the corresponding latitudinal variations of the convective flux are of the order of 7% in the lower SCZ.  相似文献   

6.
Three groups of galactic mass models, each consisting of nine inhomogeneous spheroids of two kinds are described, according to three adopted values of the total density near the Sun: 0.10, 0.15 and 0.20 M pc–3. Approximately 20% of the total mass of each model is in the halo, constructed to adequately fit recent RR Lyrae star observations. It is shown that the maxima found in the RR Lyrae star densities towards the galactic axis (Plaut, 1970) should not be interpreted as being associated with the galactic nucleus, but as the result of the greater decrease in density with increasingz over the increase in density as the galactic axis is approached. Even at the low galactic latitude of 5° (l=0°), this effect causes a 0.5 kpc correction to the distance to the galactic centre. A basic model for kpc, km s–1, M pc–3 is first constructed, mainly to satisfy structural conditions near the sun and in the halo. An attempt to optimize the basic model is made by scaling it so as to retain constant density and angular velocity near the sun, and to best fit kinematic data, including the recent re-examination of the 21-cm data of Simonson and Mader (1972). No unknown matter is required in the models, in accordance with the results of Weistrop (1972b), and, as pointed out earlier (Innanen, 1966b) the faintM-stars must be in a highly flattened spheroid. The optimizing indicates that an adequate fit to kinematics can be achieved for km s–1. More detailed results are tabulated for a representative model for which . Two new galactic density functions are discussed in the Appendix.  相似文献   

7.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

8.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

9.
Analysis of the radial velocities based on spectra of high (near the H α line) and moderate (4420–4960 Å) resolutions supplemented by the published radial velocities has revealed the binarity of a bright member of the young open star cluster χ Per, the star V622 Per. The derived orbital elements of the binary show that the lines of both components are seen in its spectrum, the orbital period is 5.2 days, and the binary is in the phase of active mass exchange. The photometric variability of the star is caused by the ellipsoidal shape of its components. Analysis of the spectroscopic and photometric variabilities has allowed the absolute parameters of the binary’s orbit and its components to be found. V622 Per is shown to be a classical Algol with moderate mass exchange in the binary. Mass transfer occurs from the less massive (\({M_1} = 9.1 \pm 2.7{M_ \odot }\)) but brighter (\(\log {L_1} = 4.52 \pm 0.10{L_ \odot }\)) component onto the more massive (\({M_2} = 13.0 \pm 3.5{M_ \odot }\)) and less bright (\(\log {L_2} = 3.96 \pm 0.10{L_ \odot }\)) component. Analysis of the spectra has confirmed an appreciable overabundance of CNO-cycle products in the atmosphere of the primary component. Comparison of the positions of the binary’s components on the T eff–log g diagram with the age of the cluster χ Per points to a possible delay in the evolution of the primary component due to mass loss by no more than 1–2Myr.  相似文献   

10.
The frequency spectra of the interplanetary magnetic field fluctuations are the projection of their wavenumber spectra onto one dimension. Only the frequency spectra can be measured by spacecrafts. It is studied how their measured size depends on the direction of the mean fieldB 0, which structures the symmetry of the fluctuations relative to the solar wind system. It is specialized for the slab model, Alfvén waves, magneto-acoustic waves and the isotropic case. For the slab model the frequency spectra are proportional to , whereq is the spectral index and the angle betweenB 0 and the radial direction. For the diffusion coefficientK TT the relation holds.  相似文献   

11.
A recent report that energetic particles measured in the solar wind may be influenced by solar gravity-mode ( -mode) oscillations motivated the search for -mode signatures in the Ulysses solar wind plasma data. Ulysses solar wind plasma data from 1 March 1992 through the 12 April 1996 were examined in this study for signs of possible solar oscillations. The multi-taper method for spectral analysis was used to look for significant spectral peaks in the entire four-year data set, as well as in the smaller, more heliographically homogenous data set over the solar poles. Several frequencies satisfying certain significance requirements were found in the -mode frequency range in both data sets that also agree with the previously published findings. However, these identifications are shown to be false detections, and hence the frequencies found cannot be identified as solar modes.  相似文献   

12.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

13.
We present the stellar parameters of the individual components of the two old close binary systems HIP 14075 and HIP 14230 using synthetic photometric analysis. These parameters are accurately calculated based on the best match between the synthetic photometric results within three different photometric systems with the observed photometry of the entire system. From the synthetic photometry, we derive the masses and radii of HIP 14075 as \({\mathcal {M}}^A=0.99\pm 0.19 \mathcal {M_\odot }\), \(R_{A}=0.877\pm 0.08 R_\odot \) for the primary and \({\mathcal {M}}^B=0.96\pm 0.15 \mathcal {M_\odot }\), \(R_{B}=0.821\pm 0.07 R_\odot \) for the secondary, and of HIP 14230 as \({\mathcal {M}}^A=1.18\pm 0.22 \mathcal {M_\odot }\), \(R_{A}=1.234\pm 0.05 R_\odot \) for the primary and \({\mathcal {M}}^B=0.84\pm 0.12 \mathcal {M_\odot }\) , \(R_{B}=0.820\pm 0.05 R_\odot \) for the secondary. Both systems depend on Gaia parallaxes. Based on the positions of the components of the two systems on a theoretical Hertzsprung–Russell diagram, we find that the age of HIP 14075 is \(11.5\pm 2.0\) Gyr and of HIP 14230 is \(3.5\pm 1.5\) Gyr. Our analysis reveals that both systems are old close binary systems (\(\approx > 4\) Gyr). Finally, the positions of the components of both the systems on the stellar evolutionary tracks and isochrones are discussed.  相似文献   

14.
An ion cyclotron instability, arising because of the relative drift between the beam and the main components of the proton distribution function in the solar wind at 1 AU, is studied. The instability is excited in a bounded range of wave numbers provided the relative drift exceeds a certain minimum value called instability threshold. For 1, the instability threshold is smaller than or equal to the threshold of magnetosonic and Alfvén instabilities. The growth rates are enhanced by increasing relative drift and ratio of beam to main proton number density and by decreasing the wave numbers.  相似文献   

15.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

16.
We analyzed the luminosity-temperature-mass of gas (L X ?T?M g ) relations for a sample of 21 Chandra galaxy clusters. We used the standard approach (β?model) to evaluate these relations for our sample that differs from other catalogues since it considers galaxy clusters at higher redshifts (0.4<z<1.4). We assumed power-law relations in the form $L_{X} \sim(1 +z)^{A_{L_{X}T}} T^{\beta_{L_{X}T}}$ , $M_{g} \sim(1 + z)^{A_{M_{g}T}} T^{\beta_{M_{g}T}}$ , and $M_{g} \sim(1 + z)^{A_{M_{g}L_{X}}} L^{\beta_{M_{g}L_{X}}}$ . We obtained the following fitting parameters with 68 % confidence level: $A_{L_{X}T} = 1.50 \pm0.23$ , $\beta_{L_{X}T} = 2.55 \pm0.07$ ; $A_{M_{g}T} = -0.58 \pm0.13$ and $\beta_{M_{g}T} = 1.77 \pm0.16$ ; $A_{M_{g}L_{X}} \approx-1.86 \pm0.34$ and $\beta_{M_{g}L_{X}} = 0.73 \pm0.15$ , respectively. We found that the evolution of the M g ?T relation is small, while the M g ?L X relation is strong for the cosmological parameters Ω m =0.27 and Ω Λ =0.73. In overall, the clusters at high-z have stronger dependencies between L X ?T?M g correlations, than those for clusters at low-z. For most of galaxy clusters (first of all, from MACS and RCS surveys) these results are obtained for the first time.  相似文献   

17.
We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (~166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3–150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\({\dot{m}}_{d}\)), sub-Keplerian accretion rate (\({\dot{m}}_{h}\)), shock location (\(r_{s}\)) and black hole mass (\(M_{\mathit{bh}}\)) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as \(L^{\mathrm{obs}}_{\mathrm{jet}} \sim3\mbox{--}6 \times10^{37}~\mbox{erg}\,\mbox{s}^{-1}\) during one of the observed radio flares which indicates that jet power corresponds to 8–16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (~14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2–7.9 \(M_{\odot}\) with 90% confidence.  相似文献   

18.
Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of \(1~\mbox{pA}/\mbox{cm}^{2}\). Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor’s hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when \(\nu_{c}\gg \nu_{b}\), where \(\nu_{c}\) is the measurement bandwidth and \(\nu_{b} \approx 1/3~\mbox{Hz}\) is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately \(1/\nu_{c}\), and the average peak current density is a weakly increasing function that scales approximately like \(\nu_{c}^{0.1}\).  相似文献   

19.
This paper deals with a new formulation of the creep tide theory (Ferraz-Mello in Celest Mech Dyn Astron 116:109, 2013—Paper I) and with the tidal dissipation predicted by the theory in the case of stiff bodies whose rotation is not synchronous but is oscillating around the synchronous state with a period equal to the orbital period. We show that the tidally forced libration influences the amount of energy dissipated in the body and the average perturbation of the orbital elements. This influence depends on the libration amplitude and is generally neglected in the study of planetary satellites. However, they may be responsible for a 27% increase in the dissipation of Enceladus. The relaxation factor necessary to explain the observed dissipation of Enceladus (\(\gamma =1.2{-}3.8\times 10^{-7}\ \mathrm{s}^{-1}\)) has the expected order of magnitude for planetary satellites and corresponds to the viscosity \(0.6{-}1.9 \times 10^{14}\) Pa s, which is in reasonable agreement with the value recently estimated by Efroimsky (Icarus 300:223, 2018) (\(0.24 \times 10^{14}\) Pa s) and with the value adopted by Roberts and Nimmo (Icarus 194:675, 2008) for the viscosity of the ice shell (\(10^{13}{-}10^{14}\) Pa s). For comparison purposes, the results are extended also to the case of Mimas and are consistent with the negligible dissipation and the absence of observed tectonic activity. The corrections of some mistakes and typos of paper II (Ferraz-Mello in Celest Mech Dyn Astron 122:359, 2015) are included at the end of the paper.  相似文献   

20.
The initial discovery of soft X-rays from Nova Muscae 1983 was followed by eight additional observations of the three brightest novae whose outburst stage coincided with the lifetime ofEXOSAT satellite; namely three more observations of Nova Muscae 1983, three observations of Nova Vulpeculae 1984#1 (PW Vul), and two observations of Nova Vulpeculae 1984#2. Through these observations we sampled the soft X-ray light curve of classical novae from optical maximum to 900 days after. The observations seem best explained by the constant bolometric luminosity model of a hot white dwarf remnant. Although the measurements suffer from limited statistics, very broad energy bandpass, and incomplete sampling of any single nova, their constraints on the theories of nova outburst are significant. One constraint is that the lifetime of the white dwarf remnant in Nova Muscae 1983 is 2 to 3 years, which leads to the conclusion that the burned envelope massM burn should be of the order of . The second constraint is that the maximum temperature, of the white dwarf remnant should approximately be within 200 000 K to 400 000 K. We estimate that a white dwarf remnant evolving like the central star of a planetary nebula, with core mass of 0.8 to 0.9M , core luminosity of 2×104 L , and envelope mass of 10–6 M , can explain the general characteristics of the X-ray measurements for Nova Muscae 1983. In order to have 1.1M core mass, estimated from the early observations of bolometric luminosity in the UV to infrared range, a wind withM5×10–7 M yr–1 appears to be necessary. The few observations of Nova Vulpeculae 1984 #1 and Nova Vulpeculae 1984#2, during the first year after outburst, give a risetime and intensity that is consistent with a constant bolometric luminosity model.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F. R. G., 16–19 June, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号