首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mersin ophiolite, represented by approximately 6-km-thick oceanic lithospheric section on the southern flank of the Taurus calcareous axis, formed in the Mesozoic Neo-Tethyan ocean some time during Late Cretaceous in southern Turkey. The ultramafic and mafic cumulates having over 3 km thickness consist of dunite ± chromite, wehrlite, clinopyroxenite at the bottom and pass into gabbroic cumulates in which leucogabbro, olivine-gabbro and anorthosite are seen. Crystallization order is olivine (Fo91−80) ± chromian spinel (Cr# 60-80), clinopyroxene (Mg#95−77), plagioclase (An95.6−91.6) and orthopyroxene (Mg#68−77). Mineral chemistry of ultramafic and mafic cumulates suggest that highly magnesian olivines, clinopyroxenes and absence of plagioclase in the basal ultramafic cumulates are in good agreement with products of high-pressure crystal fractionation of primary basaltic melts beneath an island-arc environment. Major, trace element geochemistry of the cumulative rocks also indicate that Mersin ophiolite was formed in an arc environment. Coexisting Ca-rich plagioclase and Forich olivine in the gabbroic cumulates show arc cumulate gabbro characteristics. Field relations as well as the geochemical data support that Mersin ophiolite formed in a supra-subduction zone tectonic setting in the southern branch of the Neo-Tethys in southern Turkey.  相似文献   

2.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

3.
Gabbroic plutons are part of the intrusive substructure of theSmartville Complex, a late Jurassic, rifted, ensimatic arc locatedin the northern Sierra Nevada of California. The plutons rangefrom unzoned, equant bodies of olivine gabbro less than 1 kmin diameter to elongate intrusions up to 25 km in length thatare reversly zoned from olivine gabbro cores to quartz dioriterims. The felsic rocks dip inward beneath the mafic core, indicatingthat this zoning reversal continues to depth. The zoned plutonshave relatively shallow keels. We interpret the reversed zoningas an emplacement feature, analogous to the compositional zoningin a zoned tephra sheet. It formed as a result of tapping analready zoned, deeper level magma chamber. Whether the originalzoning of the magma was concentric or stratiform cannot be readilydeduced. During emplacement, considerable amounts of cumulaterocks were mobilized. The mineralogy and geochemistry of the reversely zoned plutonsindicate that they contain two suites of rocks: a cumulate suiterepresented by olivine gabbro and olivine clinopyroxenite anda differentiated suite of non-cumulate olivine gabbros, gabbronorites,and diorites that lie along a compositional continuum and approximateliquid compositions. Plagioclase and olivine compositions inthe Smartville Complex cumulate suite are identical to thosein modern arc cumulates and are characteristic of the arc cumulatesuite. The differentiated rocks form a compositionally continuousseries that is geochemically very similar to a differentiatedsuite of arc tholeiitic basalts and andesites. Fractionationmodeling indicates that removal of mineral phases found in thecumulate gabbros from the mafic members of the differentiatedsuite can produce the lithologic variation seen in the zonedplutons. Plutons such as those in the Smartville Complex indicatethat there is a genetic link between cumulate rocks and a basalt-andesitefractionation trend in arcs, supporting the hypothesis thatarc andesites form by crystal fractionation. The gabbroic plutonsand related Alaska-type ultramafic complexes contain ultramaficcumulates that can rectify the discrepancy between the cumulatemode predicted by fractionation models and the observed modeof gabbroic cumulates in arcs.  相似文献   

4.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

5.
The present article describes, for the first time, petrological and geochemical details of the Mawpyut differentiated complex which is related to the Sylhet trap located at Jaintia Hills district, Meghalaya, northeastern India. The Mawpyut complex occurs as an arcuate body that intrudes into the surrounding Shillong Group rocks. The complex in general contains ‘ultramafic’ and ‘mafic’ rocks, as well as minor syenitic veins that postdate the main units. The lithotypes correspond to cumulate and noncumulate units. The cumulate unit is represented by olivine clinopyroxenite, clinopyroxenite, plagioclase‐bearing ultramafic, olivine gabbronorite, mela‐gabbronorite, melagabbro, orthopyroxene gabbro, and gabbro, all with a pronounced cumulus texture. The noncumulate unit is marked by gabbro, monzonite, monzodiorite, and quartzsyenite. The use of several major and trace element variation diagrams suggests that magmatic differentiation led to the formation of cumulate and noncumulate units. In chondrite‐normalized REE diagrams the cumulate rocks show flat LREE and MREE patterns and a moderate positive Eu anomaly (in plagioclase‐bearing ultramafics) due to plagioclase cumulation. The rocks of the noncumulate unit show a strongly fractionated REE pattern and no Eu anomaly. The noncumulate mafic rocks are geochemically comparable to high‐phosphorous/high‐titanium basalts (HPT) indicative of low pressure fractional crystallization. In a primitive mantle‐normalized multielement diagram some of the cumulate rocks show pronounced negative anomalies for K and P, indicating anorogenic mafic magmatism in a within‐plate setting. The rocks of the noncumulate unit show a slight negative anomaly for Yb and a Nb–Ta trough, indicating a subduction‐related signature that perhaps is inherited from subducted sedimentary rocks incorporated during crustal contamination of the derived magma (left after crystal cumulation) with country rocks. Various trace element ratios for the cumulate mafic rocks indicate parent EMI/EMII/HIMU sources with a very limited crustal signature. The noncumulate mafic rocks (corresponding to the derived evolved magma) indicate EMI/EMII/HIMU sources with a pronounced crustal contamination. The Sr–Nd isotopic compositions of the Mawpyut samples typically plot in the continental flood basalt field, with an affinity to the EMII source. The isotopic compositions of the noncumulate rocks also clearly indicate crustal contamination. We suggest that partial melting (involving garnet in the residue) of the enriched mantle source EMI/EMII/HIMU could have derived the parental melt; this melt, in turn, underwent assimilation and fractional crystallization to produce the variety of cumulate‐noncumulate lithologies of the Mawpyut complex. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The Late Permian Fe-Ti oxide ore-bearing Baima igneous complex (BIC) is one of three gabbro-granitoid complexes with the Emeishan large igneous province. Mineral compositions are determined for the BIC layered gabbro in order to constrain subsolidus and magma chamber processes. The averaged compositions of cumulus olivine, clinopyroxene and plagioclase within individual samples range from Fo65-76, Mg# = 75 to 82 and An49-64 but they are not correlative. The observed mineral compositions are consistent with those modeled using the pHMELTS program. Highly variable magnetite compositions are consistent with extensive subsolidus re-equilibration and exsolution. The occurrence of reversely-zoned granular olivine in Fe-Ti oxide ores is a manifestation of Mg transfer between Fe-Ti oxides and olivine at relatively high (<1150?°C) subsolidus temperatures. The primary oxide is inferred to be an aluminous titanomagnetite. Similar to other layered intrusions in the region, the gabbroic unit of the BIC displays Zr depletion which is consistent with loss of a residual liquid during magma differentiation. If the most Zr-rich syenites of the complex are taken into account, the Zr budgets between the combined gabbro-syenite and the basalts are similar. This indicates that the BIC most likely represents a closed system in terms of magma extraction.  相似文献   

7.
The Wadi Dabr intrusive complex, west of Mersa-Alam, Eastern Desert, Egypt ranges in composition from gabbro to diorite, quartz diorite and tonalite. The gabbroic rocks include pyroxene-horn blend e gabbro, hornblende gabbro, quartz-hornblende gabbro, metagabbro and amphibolite. Mineral chemistry data for the gabbroic rocks indicate that the composition of clinopyroxenes ranges from diopside to augite and the corresponding magma is equivalent to a volcanic-arc basalt. Plagioclase cores range from An75 to An34 for the gabbroic varieties, except for the metagabbro which has An 11–18. The brown amphiboles are primary phases and classified as calcic amphiboles, which range from tschermakitic hornblende to magnesiohornblende. Green hornblende and actinolite are secondary phases. Hornblende barometry and hornblende-plagioclase themometry for the gabbroic rocks estimate crystallisation conditions of 2–5 kb and 885–716°C.The intrusive rocks cover an extensive silica range (47.86–72.54 wt%) and do not exhibit simple straight-line variation on Harker diagrams for many elements (e.g. TiO2, Al2O3, FeO*, MgP, CaO, P2O5, Cr, Ni, V, Sr, Zr and Y). Most of these elements exhibit two geochemical trends suggesting two magma sources.The gabbroic rocks are relatively enriched in large ion lithophile elements (K, Rb, Sr and Ba) and depleted in high field strength elements (Nb, Zr, Ti and Y) which suggest subduction-related magma. Rare earth element (REE) data demonstrate that the gabbroic rocks have a slight enrichment of light REE [(La/Yb)N=2.67−3.91] and depletion of heavy REE ((Tb/Yb)N=1.42−1.47], which suggest the parent magma was of relatively primitive mantle source.The diorites and tonalites are clearly calc-alkaline and have negative anomalies of Nb, Zr, and Y which also suggest subduction-related magma. They are related to continental trondhjemites in terms of Rb---Sr, K---Na---Ca, and to volcanic-arc granites in terms of Rb---and Nb---Y.The Wadi Dabr intrusive complex is analogous to intrusions emplaced in immature ensimatic island-arcs and represents a mixture of mantle (gabbroic rocks) and crustal fusion products (diorites and tonalites) modified by fractional processes.  相似文献   

8.
Intermediate-composition plagioclase (An40–60) is typicallyless dense than the relatively evolved basaltic magmas fromwhich it crystallizes and the crystallization of plagioclaseproduces a dense residual liquid, thus plagioclase should havea tendency to float in these magmatic systems. There is, however,little direct evidence for plagioclase flotation cumulates eitherin layered intrusions or in Proterozoic anorthosite complexes.The layered series of the Poe Mountain anorthosite, southeastWyoming, contains numerous anorthosite–leucogabbro blocksthat constrain density relations during differentiation. Allblocks are more mafic than their hosting anorthositic cumulates,their plagioclase compositions are more calcic, and each blockis in strong Sr isotopic disequilibrium with its host cumulate.Associated structures—disrupted and deformed layering—indicatethat (1) a floor was present during crystallization and thatplagioclase was accumulating and/or crystallizing on the floor,(2) compositional layering and plagioclase lamination formeddirectly at the magma–crystal pile interface, and (3)the upper portions of the crystal pile contained significantamounts of interstitial melt. Liquid densities are calculatedfor proposed high-Al olivine gabbroic parental magmas and Fe-enrichedferrodioritic and monzodioritic residual magmas of the anorthositestaking into account pressure, oxygen fugacity, P2O5, estimatedvolatile contents, and variable temperatures of crystallization.For all reasonable conditions, calculated block densities aregreater than those of the associated melt. The liquid densities,however, are greater than those for An40–60 plagioclase,which cannot have settled to the floor. Plagioclase must eitherhave been carried to the floor in relatively dense packets ofcooled liquid plus crystals or have crystallized in situ. Asloping floor, possibly produced by diapiric ascent of relativelylight plagioclase-rich cumulates, is required to allow for drainingand removal of the dense interstitial liquid produced in thecrystal pile and may be a characteristic feature during thecrystallization of many Proterozoic anorthosites and layeredintrusions. KEY WORDS: magma; density; Proterozoic anorthosites; blocks; plagioclase  相似文献   

9.
The Archean Shawmere Anorthosite Complex, at the southern end of the Kapuskasing Structural Zone, consists dominantly of anorthosite (An65 –85) with minor gabbroic and ultramafic units, which are completely enclosed and cut by tonalites. Both the anorthosites and the tonalites are themselves cut by narrow dikes of gabbroic anorthosite. All of the rocks have undergone high grade metamorphism and are recrystallized so that few igneous textures remain.The anorthosites, gabbros and ultramafic rocks of this complex are cumulates which contain calcic plagioclase (An65–95) and have atomic Mg/(Mg + Fe2+) ratios (Mg#) greater than 0.6; less than 3 ppm Rb; 150–210 ppm Sr; and less than 60 ppm Ba. REE abundanees range from 0.2 to 10 times chondritic and exhibit both light-enriched and light-depleted REE patterns. The lower Mg# for the samples having more enriched light REE indicates substantial fractions of ferromagnesian minerals crystallized in addition to plagioclase during fractional crystallization, suggesting that the parent magma was basaltic, and not anorthositic. The ranges in Sr, Ba and REE abundances required for the magmas are typical of those for tholeiitic basalts from Archean greenstone belts. Thus the Shawmere Anorthosite Complex may represent cumulates of a crustal-level magma chamber which could have been the immediate source of basic Archean volcanics.One gabbroic anorthositic dike sample has a steeply fractionalted REE pattern with heavy REE abundances less than chondrites and a large positive Eu anomaly. The proposed interpretations is that this rock formed by partial melting of mafic cumulates, perhaps those of the Shawmere Anorthosite Complex itself.  相似文献   

10.
陈博  朱永峰 《岩石学报》2010,26(8):2287-2298
克拉玛依蛇绿混杂岩带百口泉剖面由尖晶石蛇纹岩、辉长岩、玄武岩和硅质岩组成。岩相学研究表明,百口泉辉长岩分为堆晶岩(具堆晶结构)和辉长岩(具辉长结构)两类,且均经历了低-中级变质改造。微量元素地球化学显示其岩浆起源于亏损地幔,强烈的Sr异常和Eu异常表明强烈的斜长石堆晶过程。根据其稀土配分模式推测其源区为尖晶石相的地幔橄榄岩。结合野外地质关系和地球化学特征,白碱滩尖晶石二辉橄榄岩能够代表其源区成分,利用微量元素模拟其岩浆演化过程显示:尖晶石二辉橄榄岩发生2.5%部分熔融所形成的熔体,通过10%~20%分离结晶可以形成堆晶辉长岩,经过80%~90%分离结晶则可以形成具辉长结构的辉长岩。因此,蛇绿混杂岩中零星分布的堆晶岩和辉长岩团块是同源岩浆演化的产物。对分离结晶过程中Nb元素地球化学行为的研究表明,岩浆的结晶分异能够导致辉长岩明显亏损Nb。  相似文献   

11.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

12.
Lavas and pyroclastic products of Nisyros volcano (Aegean arc, Greece) host a wide variety of phenocryst and cumulate assemblages that offer a unique window into the earliest stages of magma differentiation. This study presents a detailed petrographic study of lavas, enclaves and cumulates spanning the entire volcanic history of Nisyros to elucidate at which levels in the crust magmas stall and differentiate. We present a new division for the volcanic products into two suites based on field occurrence and petrographic features: a low-porphyricity andesite and a high-porphyricity (rhyo)dacite (HPRD) suite. Cumulate fragments are exclusively found in the HPRD suite and are predominantly derived from upper crustal reservoirs where they crystallised under hydrous conditions from melts that underwent prior differentiation. Rarer cumulate fragments range from (amphibole-)wehrlites to plagioclase-hornblendites and these appear to be derived from the lower crust (0.5–0.8 GPa). The suppressed stability of plagioclase and early saturation of amphibole in these cumulates are indicative of high-pressure crystallisation from primitive hydrous melts (≥ 3 wt% H2O). Clinopyroxene in these cumulates has Al2O3 contents up to 9 wt% due to the absence of crystallising plagioclase, and is subsequently consumed in a peritectic reaction to form primitive, Al-rich amphibole (Mg# > 73, 12–15 wt% Al2O3). The composition of these peritectic amphiboles is distinct from trace element-enriched interstitial amphibole in shallower cumulates. Phenocryst compositions and assemblages in both suites differ markedly from the cumulates. Phenocrysts, therefore, reflect shallow crystallisation and do not record magma differentiation in the deep arc crust.  相似文献   

13.
The G?ksun(Kahramanmaras)ophiolite(GKO),cropping out in a tectonic window bounded by the Malatya metamorphic unit on both the north and south,is located in the EW-trending lower nappe zone of the southeast Anatolian orogenic belt(Turkey).It exhibits a complete oceanic lithospheric section and overlies the Middle Eocene Maden Group/Complex with a tectonic contact at its base.The ophiolitic rocks and the tectonically overlying Malatya metamorphic(continental)unit were intruded by I-type calc-alkaline Late Cretaceous granitoid(~81-84 Ma).The ultramafic to cumulates in the GKO are represented by wehrlite,plagioclase wehrlite,olivine gabbro and gabbro.The crystallization order for the cumulate rocks is as follows:olivine±chromian spinel→clinopyroxene→plagioclase.The major and trace element geochemistry as well as the mineral chemistry of the ultramafic to mafic cumulate rocks suggest that the primary magma generating the GKO is compositionally similar to that observed in the modern island-arc tholeiitic sequences.The mineral chemistry of the ultramafic to mafic cumulates indicates that they were derived from a mantle source that was previously depleted by earlier partial melting events.The highly magnesian olivine(Fo77-83),clinopyroxene(Mg#of 82-90)and the highly Ca-plagioclase(An81-89)exhibit a close similarity to those,which formed in a supra-subduction zone(SSZ)setting.The field and the geochemical evidence suggest that the GKO formed as part of a much larger sheet of oceanic lithosphere,which accreted to the base of the Tauride active continental margin,including the ispendere,K?mürhan and the Guleman ophiolites.The latter were contemporaneous and genetically/tectonically related within the same SSZ setting during the closure of the Neotethyan oceanic basin(Berit Ocean)between the Taurides to the north and the Bitlis-Pütürge massif to the south during the Late Cretaceous.  相似文献   

14.
Ultramafic/mafic complexes hosting Fe-Ni-Cu mineralization occur as small, lensoidal bodies within the Svecofennian, molasse-like metasedimentary rocks of the Vammala Nickel Belt (VNB) in southwestern Finland. One of them, the Sääksjärvi metaperidotitemetagabbro complex, has been studied to gain a better understanding of their petrogenesis and timing of emplacement. These ultramafic rocks were emplaced before the regional upper-amphibolite-facies metamorphism of the Svecofennian orogeny. They recrystallized to amphibole-dominated assemblages comprising: (1) in metaperidotiteolivine + magnesian hornblende ± chromite ± enstatite ± augite ± phlogopite; (2) in hornblendite-actinolitic hornblende ± augite ± plagioclase ± Fe-Ti oxides; and (3) in metagabbro-actinolitic hornblende + plagioclase ± Fe-Ti oxides ± biotite. The recrystallization was accompanied by changes that involved the formation of a lattice-preferred orientation in olivine and porphyroclastic, poikiloblastic, and equigranular textures.

Geochemical modeling indicates that the ultramafic rocks were derived from a tholeiitic magma (Mg/Mg + Fe = 0.58 to 0.62; Ni = 90 to 120 ppm; low Ti content) by olivine (Fo78-84) accumulation and, in the case of the gabbro differentiates, accumulation of olivine with subordinate clinopyroxene and plagioclase. The geochemical character is that of island-arc low-Ti tholeiites and, like other VNB intrusions, involves enrichment of light-ion-lithophile elements and rare-earth elements relative to high-field-strength elements compared with normalized mid-oceanic-ridge basalts; this is particularly evident in the Nd/Nb, Zr/Nb, and Th/ Nb ratios. In the studied cumulate body, the sheared margins and the contact-parallel foliation indicate that the ultramafic bodies underwent plastic deformation and possibly were displaced along the evolving foliation in the more ductile migmatitic country rocks. This is contrary to previous interpretations of the VNB ultramafic bodies, which have been treated essentially as unmodified in situ magmatic intrusions.  相似文献   

15.
《International Geology Review》2012,54(11):1395-1412
The Neyriz ophiolite along the northeast flank of the Zagros fold-thrust belt in southern Iran is an excellent example of a Late Cretaceous supra-subduction zone (SSZ)-related ophiolite on the north side of the Neotethys. The ophiolite comprises a mantle sequence including lherzolite, harzburgite, diabasic dikes, and cumulate to mylonitic gabbro lenses, and a crustal sequence comprising a sheeted dike complex and pillow lavas associated with pelagic limestone and radiolarite. Mantle harzburgites contain less CaO and Al2O3, are depleted in rare earth elements, and contain spinels that are more Cr-rich than lherzolites. Mineral compositions of peridotites are similar to those of both abyssal and SSZ- peridotites. Neyriz gabbroic rocks show boninitic (SSZ-related) affinities, while crustal rocks are similar to early arc tholeiites. Mineral compositions of gabbroic rocks resemble those of SSZ-related cumulates such as high forsterite olivine, anorthite-rich plagioclase, and high-Mg# clinopyroxene. Initial εNd(t) values range from +7.9 to +9.3 for the Neyriz magmatic rocks. Samples with radiogenic Nd overlap with least radiogenic mid-ocean ridge basalts and with Semail and other Late Cretaceous Tethyan ophiolitic rocks. Initial 87Sr/86Sr ranges from 0.7033 to 0.7044, suggesting modification due to seafloor alteration. Most Neyriz magmatic rocks are characterized by less radiogenic 207Pb/204Pb (near the northern hemisphere reference line), suggesting less involvement of sediments in their mantle source. Our results for Neyriz ophiolite and the similarity to other Iranian Zagros ophiolites support a subduction initiation setting for its generation.  相似文献   

16.
The textures and kinetics of reaction between plagioclase and melts have been investigated experimentally, and origin of dusty plagioclase in andesites has been discussed. In the experiments plagioclase of different compositions (An96, An61, An54, An23, and An22) surrounded by glasses of six different compositions in the system diopside-albite-anorthite was heated at temperatures ranging from 1,200 to 1,410° C for 30 min to 88 h. Textures were closely related to temperature and chemical compositions. A crystal became smaller and rounded above the plagioclase liquidus temperature of the starting melt (glass) and remained its original euhedral shape below the liquidus. Whatever the temperature, the crystal-melt interface became rough and often more complicated (sieve-like texture composed of plagioclase-melt mixture in the scale of a few m was developed from the surface of the crystal inward; formation of mantled plagioclase) if the crystal is less calcic than the plagioclase in equilibrium with the surrounding melt, and the interface remained smooth if the crystal is more calcic than the equilibrium plagioclase. From these results the following two types of dissolution have been recognized; (1) a crystal simply dissolves in the melt which is undersaturated with respect to the phase (simple dissolution), and a crystal is partially dissolved to form mantled plagioclase by reaction between sodic plagioclase and calcic melt (partial dissolution). The amount of a crystal dissolved and reacted increased proportional to the square root of time. This suggests that these processes are controlled by diffusion, probably in the crystal.Mantled plagioclase produced in the experiments were very similar both texturally and chemically to some of the so-called resorbed plagioclase in igneous rocks. Chemical compositions and textures of plagioclase phenocrysts in island-arc andesites of magma mixing origin have been examined. Cores of clear and dusty plagioclase were clacic (about An90) and sodic (about An50), respectively. This result indicates that dusty plagioclases were formed by the partial melting due to reaction between sodic plagioclase already precipitated in a dacitic magma and a melt of intermediate composition in a mixed magma during the magma mixing.  相似文献   

17.
The Kurancali ultramafic-mafic cumulate body, an allochthonous ophiolitic sliver in central Anatolia, is characterized by the presence of abundant hydrous phases (phlogopite, pargasite) besides augitic diopside, plagioclase, and accessory amounts of rutile, sphene, apatite, zircon, and calcite. Based on modes of the essential minerals, the olivine-orthopyroxene-free cumulates are grouped as clinopyroxenite, hydrous clinopyroxenite, phlogopitite, hornblendite, layered gabbro, and diorite. Petrographical, mineralogical and geochemical features of the rocks infer crystallization from a hydrous magma having high-K calc-alkaline affinity with slightly alkaline character, and point to metasomatised mantle as the magma source. Our evidence implies that the metasomatising component, which modified the composition of the mantle wedge source rock in an intra-oceanic subduction zone, was a H2O, alkali and carbonate-rich aluminosilicate fluid and/or melt, probably derived from a subducted slab. We suggest that the metasomatic agents in the subarc mantle led to the generation of a hydrous magma, which produced the Kurancali cumulates in an island-arc basement in a supra-subduction-zone setting during the closure of the Izmir-Ankara-Erzincan branch of the Alpine Neotethys Ocean.  相似文献   

18.
The Were Ilu ignimbrites are unlike other Oligocene rhyolites from the Ethiopian continental flood basalt province, in that they consist of plagioclase (An19–54), augite, pigeonite and Ti-magnetite, instead of anorthoclase, sodic sanidine, aegirine-augite and ilmenite. The minerals occur as (micro-)phenocrysts isolated within a glassy matrix or forming gabbroic and dioritic cumulophyric clots. Plagioclase is partially re-melted (sieve-textures with infilling glass). It is zoned with sudden changes in composition. However, the bulk zoning is normal with An-rich core (An45–54) and more sodic rim (An19–28). Ba and Sr concentration profiles of two plagioclase phenocrysts show a bulk rimward increase with compositions ranging from 250 ppm to 1,060 ppm and from 400 ppm to 1,590 ppm, respectively. The matrix glass has low CaO content (0.1–0.5 wt.%), a peralkalinity index of 0.79–1.04 and average Sr and Ba contents of 48±22 and 525±129 ppm, respectively. Geochemical modelling of Ba and Sr zoning profiles of plagioclase, based on experimental constraints, suggests that the cumulophyric clots can be derived from fractional crystallisation associated with limited assimilation (8 wt.%) from melts slightly less evolved than their rhyolitic matrix glass. These clots are not witnesses of intermediate magmas allowing the Daly Gap to be filled, but are cumulates differentiated from rhyodacitic melt. This indicates that parental magmas were stored in crustal magma chambers where they differentiated before being erupted at the surface.  相似文献   

19.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   

20.
The Loch Ba ring-dyke in the Tertiary igneous central complex of Mull, N.W. Scotland is composed predominantly of a banded rhyolitic welded tuff. The rhyolite contains numerous inclusions of dark aphanitic rock. The textural relationships between the different rocks indicate rapid, violent and intimate mixing during emplacement of the dyke. The dark glassy component varies continuously from basaltic andesite to andesite, dacite and rhyolite. These glasses are enriched in FeO and depleted in MgO at a given SiO2 content in comparison to other tholeiitic highly differentiated volcanic rocks. The rhyolite contains an average of 4% phenocrysts and is associated with the mineral assemblage plagioclase (An32 to An21)-sanidine(Or50–60)-hedenbergite-fayalite-magnetite-ilmenite-apatite-zircon. Mineral aggregates involving either plagioclase-hedenbergite-ilmenite or plagioclase-fayalite-magnetite are common, but aggregates containing fayalite and hedenbergite together are scarce. The dark glassy components are either phenocryst free or contain less than 0.2% phenocrysts. The main phenocrysts associated with the dark glasses are plagioclase (An65-An30), high calcium clinopyroxene ranging continuously from augite to pure hedenbergite, pigeonite, magnetite, ilmenite and rare apatite. Zoning in minerals is generally weak or absent. The plagioclase feldspar, high calcium clinopyroxenes and pigeonites have similar compositional ranges to the minerals observed in the Middle and Upper Zones of the Skaergaard Intrusion. The mineral compositions are systematically related to SiO2 content and Mg number of the glasses. The data demonstrate that mineral compositions and assemblages similar to the Skaergaard form from silica-rich andesitic to rhyolitic liquids. The various mafic glasses are interpreted to have been derived from a zoned magma chamber underlying an upper layer of rhyolitic magma. Differentiation is attributed to fractional crystallization of the observed mineral assemblages causing SiO2 enrichment and FeO depletion. However, glasses with less than 57% SiO2 have unusual compositions with very low MgO and P2O5 as well as variable Al2O3 and TiO2. Their peculiarities could be explained by andesitic magmas assimilating cumulate mineral aggregates precipitated from more differentiated dacite and rhyolite magmas. The bulk compositions of these cumulates have high FeO, low SiO2 and negligible MgO and P2O5. It is suggested that the high density of the mineral aggregates containing fayalite-hedenbergite-magnetite and ilmenite caused them to settle through the zoned chamber to be assimilated by high temperature, less differentiated magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号