首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

2.
Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial–interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.  相似文献   

3.
The Late-Glacial infills of three lake successions in The Netherlands have been analysed for their palaeobotanical content (pollen, macroremains) as well as for their physical and chemical characteristics. The macro-botanical analysis in association with the pollen analysis permitted the reconstruction of relative lake level fluctuations for each lake. There appeared to be good agreement between the three lake successions. Supporting evidence for the presence of alternating dry and wet phases was found in the geochemical results. The termination of the Bölling biozone coincides with a lowering of the lake levels that persisted throughout the Older Dryas. Water levels restore at the beginning of the Allerod biozone. Several fluctuations are recognized during the Allerod. The end of the Alleröd is characterized by a second major lowering in the lake levels, leading to an interruption in the sedimentation in cores from the fringe zone. Water depth increases at the beginning of the Younger Dryas biozone. A third major minimum in the lake levels is reached towards the end of the Younger Dryas biozone, probably explaining the recurrent hiatus at the transition to the Holocene record. Pollen concentration data in association with chronostratigraphical data provided the construction of sedimentation rate curves. Minima in these sedimentation rate curves appeared to correlate with periods of low lake level. The loss on ignition curve in association with the sedimentation rate data allowed an approximation of the organic production of the lakes involved. It revealed that the darker appearance of the Allerödin the lithologycan be ascribed mainly to a retardationin the sedimentation rate and not to a major increase in the organic production of the lakes.  相似文献   

4.
New dating in the Carson Sink at the termini of the Humboldt and Carson rivers in the Great Basin of the western United States indicates that lakes reached elevations of 1204 and 1198 m between 915 and 652 and between 1519 and 1308 cal yr B.P., respectively. These dates confirm Morrison's original interpretation (Lake Lahontan: Geology of the Southern Carson Desert, Professional Paper 40, U.S. Geol. Survey, 1964) that these shorelines are late Holocene features, rather than late Pleistocene as interpreted by later researchers. Paleohydrologic modeling suggests that discharge into the Carson Sink must have been increased by a factor of about four, and maintained for decades, to account for the 1204-m lake stand. The hydrologic effects of diversions of the Walker River to the Carson Sink were probably not sufficient, by themselves, to account for the late Holocene lake-level rises. The decadal-long period of increased runoff represented by the 1204-m lake is also reflected in other lake records and in tree ring records from the western United States.  相似文献   

5.
We present a Lateglacial and early Holocene chironomid‐based July air temperature reconstruction from Foppe (1470 m a.s.l.) in the Swiss Southern Alps. Our analysis suggests that chironomid assemblages have responded to major and minor climatic fluctuations during the past 17 000 years, such as the Oldest Dryas, the Younger Dryas and the Bølling/Allerød events in the Lateglacial and the Preboreal Oscillation at the beginning of the Holocene. Quantitative July air temperature estimates were produced by applying a combined Norwegian and Swiss temperature inference model consisting of 274 lakes to the fossil chironomid assemblages. The Foppe record infers average July air temperatures of ca. 9.9 °C during the Oldest Dryas, 12.2 °C during most of the Bølling/Allerød and 11.1 °C for the Younger Dryas. Mean July air temperatures during the Preboreal were 14 °C. Major temperature changes were observed at the Oldest Dryas/Bølling (+2.7 °C), the Allerød/Younger Dryas (?2 °C) and the Younger Dryas/Holocene transitions (+3.9 °C). The temperature reconstruction also shows centennial‐scale coolings of ca. 0.8–1.4 °C, which may be synchronous with the Aegelsee (Greenland Interstadial 1d) and the Preboreal Oscillations. A comparison of our results with other palaeoclimate records suggests noticeable temperature gradients across the Alps during the Lateglacial and early Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Global climate change associated with the onset of the Younger Dryas chronozone affected different regions of the northern hemisphere in different ways. In the Great Basin of western North America, the effect was positive for human populations. Relatively cool temperatures causing effectively wetter conditions filled some pluvial basins with shallow but permanent lakes and other basins with well-watered marshes or meadows. Vegetation communities dominated by sagebrush and grasses promoted healthy and diverse animal populations. Ten archaeological sites from the region have been dated to the Younger Dryas chronozone. Evidence from these sites indicates that Paleoindians with skull shapes and mitochondrial DNA similar to modern western North American Indians occupied the region. These early humans produced a material culture characterized predominantly by large stemmed bifacial points, although one site contained a small fluted point. Curated tool forms and technological activities represented in analyzed lithic assemblages suggest a highly mobile settlement strategy, and redundant short-term occupations of sites indicate frequent and long-distance residential moves across territories spanning distances of up to 400 km. Paleoindian subsistence pursuits focused on artiodactyls (primarily mule deer, bighorn sheep, and pronghorn antelope), leporids (chiefly jackrabbits), birds (sage grouse and waterfowl), insects (grasshoppers), and possibly fish. Easy-to-process plants like cactus pads were also eaten, but small seeds do not seem to have been an important part of Great Basin human diets until long after the Younger Dryas, closer to 9500 cal BP. The Great Basin record contains no evidence for natural catastrophe at the onset of the chronozone. Instead, the Younger Dryas appears to have been among the best of times for human foragers in this region of North America.  相似文献   

8.
Estimating palaeowind strength from beach deposits   总被引:1,自引:0,他引:1  
Abstract The geological record of past wind conditions is well expressed in the coarse gravel, cobble and boulder beach deposits of Quaternary palaeolakes in the Great Basin of the western USA and elsewhere. This paper describes a technique, using the particle‐size distribution of beach deposits, to reconstruct palaeowind conditions when the lakes were present. The beach particle technique (BPT) is first developed using coarse beach deposits from the 1986–87 highstand of the Great Salt Lake in Utah, combined with instrumental wind records from the same time period. Next, the BPT is used to test the hypothesis that wind conditions were more severe than at present during the last highstand of Lake Lahontan (≈ 13 ka), which only lasted a decade or two at most. The largest 50 beach clasts were measured at nine beach sites located along the north, west and south sides of Antelope Island in the Great Salt Lake, all of which formed in 1986–87. At these sites, the largest clast sizes range from 10 to 28 cm (b‐axis), and fetch lengths range from 25 to 55 km. Nearshore wave height was calculated by assuming that the critical threshold velocity required to move the largest clasts represents a minimum estimate of the breaking wave velocity, which is controlled by wave height. Shoaling transformations are undertaken to estimate deep‐water wave heights and, ultimately, wind velocity. Wind estimates for the nine sites, using the BPT, range from 6·5 to 17·4 m s?1, which is in reasonable agreement with the instrumental record from Salt Lake City Airport. The same technique was applied to eight late Pleistocene beaches surrounding the Carson Sink sub‐basin of Lake Lahontan, Nevada. Using the BPT, estimated winds for the eight sites range from 9·7 to 27·1 m s?1. The strongest winds were calculated for a cobble/boulder beach with a fetch of 25 km. Instrumental wind records for the 1992–99 period indicate that wind events of 9–12 m s?1 are common and that the strongest significant wind event (≥ 9 m s?1 for ≥ 3 h) reached an average velocity of 15·5 m s?1. Based on this preliminary comparison, it appears that the late Pleistocene western Great Basin was a windier place than at present, at least for a brief time.  相似文献   

9.
10.
This article investigates changing lake levels in the late Pleistocene eastern Great Lakes in order to gain insights into the Early Palaeo‐Indian occupations. Significant new information bearing on lake level history is provided, notably the first well‐documented deposits of a high water level above modern in the ca. 11,000–10,300 B.P. period in the southern Lake Huron basin. The lake level information, along with paleoenvironmental and site data, reinforces site age estimates to the 11th millennium B.P.; suggests significant numbers of sites have been inundated by rising water levels; provides specific information on the setting of archaeological sites such as placing the Parkhill site adjacent to a large lake estuary; indicates reasons for the attractiveness of shorelines to Palaeo‐Indians including persistence of more open areas conducive to higher game productivity; and points to ideal areas for future archaeological site survey, particularly in the Lake Erie drainage. © 2000 John Wiley & Sons, Inc.  相似文献   

11.
根据内蒙古伊克昭盟5个盐湖中6个钻孔岩心的340件氧碳稳定同位素样品测试数据,分析了该区的古气候变化特征。氧碳同位素记录的研究表明,盐湖水体的δ13O变化主要是受湖水的蒸发作用和淡化过程所控制,而δ13C值的波动主要受湖泊水体中TDIC变化以及湖泊水体与大气间碳交换的制约。盐湖的水体环境在过去23ka之中经历了17次明显的波动变化,揭示了晚更新世冷湿—早全新世暖湿—中晚全新世暖(偏冷)干的晚第四纪气俟变化规律及3个重要的气侯事件(10.80~10.50kaB.P.新仙女木事件,7.50~5.00kkB.P.重要降温事件和7.37~6.35kaB.P.大暖期高湖面事件),并预测未来全球长周期(1000a以上)气候演变趋势─—渐冷。  相似文献   

12.
Many German lakes experienced significant water level declines in recent decades that are not fully understood due to the short observation period. At a typical northeastern German groundwater‐fed lake with a complex basin morphology, an acoustic sub‐bottom profile was analysed together with a transect of five sediment cores, which were correlated using multiple proxies (sediment facies, μ‐XRF, macrofossils, subfossil Cladocera). Shifts in the boundary between sand and mud deposition were controlled by lake level changes, and hence, allowed the quantification of an absolute lake level amplitude of ~8 m for the Holocene. This clearly exceeded observed modern fluctuations of 1.3 m (AD 1973–2010). Past lake level changes were traced continuously using the calcium‐record. During high lake levels, massive organic muds were deposited in the deepest lake basin, whereas lower lake levels isolated the sub‐basins and allowed carbonate deposition. During the beginning of the Holocene (>9700 cal. a BP), lake levels were high, probably due to final melting of permafrost and dead‐ice remains. The establishment of water‐use intensive Pinus forests caused generally low (3–4 m below modern) but fluctuating lake levels (9700–6400 cal. a BP). Afterwards, the lake showed an increasing trend and reached a short‐term highstand at c. 5000 cal. a BP (4 m above modern). At the transition towards a cooler and wetter late Holocene, forests dominated by Quercus and Fagus and initial human impact probably contributed more positively to groundwater recharge. Lake levels remained high between 3800 and 800 cal. a BP, but the lake system was not sensitive enough to record short‐term fluctuations during this period. Lake level changes were recorded again when humans profoundly affected the drainage system, land cover and lake trophy. Hence, local Holocene water level changes reflect feedbacks between catchment and vegetation characteristics and human impact superimposed by climate change at multiple temporal scales.  相似文献   

13.
A substantially modified history of the last two cycles of Lake Bonneville is proposed. The Bonneville lake cycle began prior to 26,000 yr B.P.; the lake reached the Bonneville shoreline about 16,000 yr B.P. Poor dating control limits our knowledge of the timing of subsequent events. Lake level was maintained at the Bonneville shoreline until about 15,000 yr B.P., or somewhat later, when catastrophic downcutting of the outlet caused a rapid drop of 100 m. The Provo shoreline was formed as rates of isostatic uplift due to this unloading slowed. By 13,000 yr B.P., the lake had fallen below the Provo level and reached one close to that of Great Salt Lake by 11,000 yr B.P. Deposits of the Little Valley lake cycle are identified by their position below a marked unconformity and by amino acid ratios of their fossil gastropods. The maximum level of the Little Valley lake was well below the Bonneville shoreline. Based on degree of soil development and other evidence, the Little Valley lake cycle may be equivalent in age to marine oxygenisotope stage 6. The proposed lake history has climatic implications for the region. First, because the fluctuations of Lake Bonneville and Lake Lahontan during the last cycle of each were apparently out of phase, there may have been significant local differences in the timing and character of late Pleistocene climate changes in the Great Basin. Second, although the Bonneville and Little Valley lake cycles were broadly synchronous with maximum episodes of glaciation, environmental conditions necessary to generate large lakes did not exist during early Wisconsin time.  相似文献   

14.
A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea‐level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea‐level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time‐scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post‐glacial rise in Betula (birch) pollen). The sea‐level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary. The sea level remained at the high stand for about 300 yr and 100 yr into Holocene it started to fall rapidly. The peak of the Younger Dryas transgression occurred simultaneously with the maximum extent of the ice‐sheet readvance in the area. Our results support earlier geophysical modelling concluding a causal relationship between the Younger Dryas glacier advance and Younger Dryas transgression in western Norway. We argue that the sea‐level curve indicates that the Younger Dryas glacial advance started in the late Allerød or close to the Allerød–Younger Dryas transition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This study deals with the relationship between sea-level changes and paleoclimatic fluctuations based on the analysis of stratigraphy, grain sizes, palynology, and radiometric dating of the Yellow River delta since the Late Pleistocene. Evidence from the sedimentary record, grain sizes, and pollen provides a paleoenvironmental history of the Late Pleistocene from the boreholes of the delta. Based on a combination of grain-size analysis with lithological studies, marine deposit units contain the intervals of 13.85–16.9, 18.5–19.69, 27.9–34.8, 36.4–37.2, 48.4–51.6, and 54.1–55.9 m, and transitional facies units contain the intervals of 10.25–13.85, 16.9–18.5, 19.69–27.9, 34.8–36.4, 37.2–48.4, 51.6–54.1, and 55.9–60 m, compared with fluvial(terrestrial facies) deposit units(3.36–10.25 m). Based on pollen analysis and pollen assemblages, there were three warm-wet periods from 9.1–0.16 ka BP, 16.1–60 ka BP, and 90.1–94.6 ka BP From the top to the bottom of the borehole, the paleoclimate has an evident fluctuation: warm and moist(Holocene Optimum) —cool and dry(Younger Dryas Event)—mild semi cool—cool and dry—warm and moist. There were three warm-wet periods from 9.1–0.16 ka BP, 16.1–60 ka BP, and 90.1–94.6 ka BP, corresponding to the Holocene Optimum stage, MIS 3, and MIS 5, respectively. The warm period allowed monsoonal evergreen and broadleaved deciduous forests that corresponded to Holocene hypsithermal climatic conditions and the Late Pleistocene climatic Optimum. Three warm-wet periods occurred in marine deposit units from 9.1–0.16 ka BP, 60.1–16.1 ka BP, and 94.6–90.1 ka BP. These periods correspond to the Cangzhou transgression, Xianxian transgression, and Huanghua transgression, respectively. From 90.1–60.1 ka BP, 17.5–9.1 ka BP, and 0. 16 ka BP–1855 AD, three dry and cold phases are recognized. The phases indicate the fluvial(flood plain) sedimentary environment, corresponding to cooler and mild dry periods based on palynological results and grain-size distribution.  相似文献   

16.
A lake sediment record from the Friedländer Groβe Wiese in northeast Germany was studied to reconstruct summer temperature changes associated with changes in vegetation development during the Weichselian Lateglacial. The record was analysed for pollen, chironomids, and oxygen and carbon isotopes of lake marl. The combination of radiocarbon dates, the presence of the Laacher See Tephra and correlation of lithological and palynological changes with other records from the region indicated that the record encompassed the Allerød to the early Holocene. Pollen assemblages reflect development of birch and later pine‐dominated forests during the Allerød, comparable to other sites in the region. Chironomid‐inferred mean July air temperatures (C‐IT) for this period range between ~14.0 and 14.8°C. A temporary decrease in C‐IT of ~1°C, a negative shift in the isotope records, and a minor decline of birch may correspond to Greenland Interstadial 1b. Even though the transition to the Younger Dryas appears to be affected by reworking and redeposition processes, a drop in C‐IT to ~11.1°C is reconstructed for the later part of the Younger Dryas, while it appears that pine locally persisted in the region. Comparison with a nearby pollen record further indicates a local expansion of wetland grasses during this period. At the transition to the Holocene, C‐IT increased to ~15.7°C, while birch and pine forests re‐expanded. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The Great Basin in the western United States consists of almost level desert basins and alternating parallel mountain ranges. It has sparse, mostly interior, drainage and a few permanent lakes. The climate is arid and semiarid. Fairly large areas are true deserts. The main Cenozoic climatic changes have been: 1. a general cooling during the Tertiary and the early Pleistocene, 2. a progressive drying from the early Miocene into the Pleistocene as a consequence of rise of the Sierra Nevada and the Cascades, and 3. Pleistocene fluctuations between cold-moist and warm-dry ages.The Ice Age left known records of three or four major glaciations, the last of which had two maxima. The glaciations were relatively extensive on the eastern flank of the Sierra Nevada and just east of the Great Basin, and glaciers existed on several ranges in northeastern Nevada. Each glacial was accompanied by a pluvial, which culminated just after the glacial maximum. The pluvial lakes were largest on Lat. 40°. The histories of the huge lakes Bonneville and Lahontan are incompletely known. During the Mankato-Tioga-Provo'glacio-pluvial maximum the temperature in the Great Basin seems to have been only 2.5–3 C° lower, and the precipitation on the surface of Lake Lahontan (Dendritic Lake) twice as large as now.The Neothermal (Postglacial, Postpluvial), the equivalent of the interglacials, is with long-distance correlation in view subdivided on the basis of the major temperature changes into the Ana-,.Alti-, and Medithermal ages. However, in the dry country of the Great Basin the changes in moisture are more apparent and important. The Altithermal was distinctly drier than the present, and nearly all the basins went dry. About 2000 B.C. several basins began again to contain lakes which remained permanent through some acute brief droughts. These recentmodern lakes attained very moderate maxima some time before Christ, while the glaciers in the adjacent mountains probably reached their greatest extent since the Anathermal during the last centuries.  相似文献   

18.
The complexity of the age dating of the Pleistocene ice-dammed paleolakes in the Altai Mountains is a reason why geologists consider the Early Paleolithic archaeological sites as an independent age marker for dating geological objects. However, in order to use these sites for paleogeographic reconstructions, their locations, the character of stratification, and the age of stone artifacts need to be comprehensively studied. We investigate 20 Late Paleolithic archaeological sites discovered in the Chuya depression of the Russian Altai (Altai Mountains) with the aim of their possible use for reconstructions of the period of development of the Kurai–Chuya glacio-limnosystem in the Late Neopleistocene. The results of our investigation show that it is improper to use the Paleolithic archaeological sites for the dating of the existence period and the draining time of ice-dammed lakes of the Chuya Depression in the modern period of their study owing to a lack of quantitative age estimates, a wide age range of possible existence of these sites, possible redeposition of the majority of artifacts, and their surface occurrence. It is established that all stratified sites where cultural layers are expected to be dated in the future lie above the uppermost and well-expressed paleolake level (2100 m a.s.l.). Accordingly, there are no grounds to determine the existence time of shallower paleolakes. Since the whole stone material collected below the level of 2100 m a.s.l. is represented by surface finds, it is problematic to use these artifacts for absolute geochronology. The Late Paleolithic Bigdon and Chechketerek sites are of great interest for paleogeographic reconstructions of ice-dammed lakes. The use of iceberg rafting products as cores is evidence that these sites appeared after the draining of a paleolake (2000 m a.s.l.). At this time, the location of these archaeological sites on the slope of the Chuya Depression allows one to assume the existence of a large lake as deep as 250 m synchronously with the above paleolake or later. The location of the lowermost archaeological sites is evidence that a paleolake could have existed at an altitude below 1770 m a.s.l. in the Late Neopleistocene–Early Holocene. The absolute geochronology of the archaeological sites (cultural layers in multilayered sites, split surfaces on dropstones, etc.) can be useful for further reconstructions of the existence time, depths, and a number of ice-dammed lakes in the Kurai–Chuya system of depressions.  相似文献   

19.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The role and extent of climate as a cause of the expansion and decline of human cultures is still debatable. It is clear, however, that human–environment interactions are enhanced and interplay more closely in climatically sensitive areas such as around hydrologically closed basins. Lago Cardiel is located at 49° S in the very arid rain shadow east of the Andes, providing an exceptionally receptive system to changes in hydrological balance. Results of a geophysical survey combined with sedimentological and geochemical studies provide a continuous Lateglacial–Holocene record of substantial water‐level changes. These variations, combined with archaeological results from the catchment area, offer a unique possibility to explore the pattern of peopling within this remote area of the globe and its possible relation to climate change. Human occupation in Patagonia is well documented towards the Andes throughout the entire Holocene. Archaeological data from the Lago Cardiel basin, however, show an apparent lack of human activity during the first part of this period, which coincides with well‐constrained high lake levels. Our results show an intriguing coincidence between low lake level and increasing human occupation, suggesting that the Lago Cardiel basin has focused human use during intervals with relatively lower effective moisture such as during the Late Pleistocene, but its evidence may have been submerged. This interpretation is confirmed by archaeological remains from Lago Strobel, another perennial lake with a comparable catchment located in the same climatic region and thus sharing the same climatic history as Lago Cardiel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号