首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of shear in alleviating catastrophic quenching by shedding small‐scale magnetic helicity through fluxes along contours of constant shear is discussed. The level of quenching of the dynamo effect depends on the quenched value of the turbulent magnetic diffusivity. Earlier estimates that might have suffered from the force‐free degeneracy of Beltrami fields are now confirmed for shear flows where this degeneracy is lifted. For a dynamo that is saturated near equipartition field strength those estimates result in a 5‐fold decrease of the magnetic diffusivity as the magnetic Reynolds number based on the wavenumber of the energy‐carrying eddies is increased from 2 to 600. Finally, the role of shear in driving turbulence and large‐scale fields by the magneto‐rotational instability is emphasized. New simulations are presented and the 3π /4 phase shift between poloidal and toroidal fields is confirmed. It is suggested that this phase shift might be a useful diagnostic tool in identifying mean‐field dynamo action in simulations and to distinguish this from other scenarios invoking magnetic buoyancy as a means to explain migration away from the midplane. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Although current interest in astrophysical dynamo theory is largely focussed on flows with both large‐ and small‐scale motions, historically the study of dynamos driven by laminar flows has been important. Some classical laminar flow dynamos are reviewed. These results were obtained in an asymptotic regime corresponding to small values of system parameters. Numerical simulations have since been used to extend these results outside of these asymptotic regimes; the asymptotic results remain useful approximations well outside of their formal regions of validity. By changing slightly the system geometries some interesting new results have recently been obtained The latter include the very simple “one‐roll” dynamo, with motions in a single meridional cell contained within a spherical volume of fluid, without differential rotation (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos with α linearly depending on position, which makes this dynamo oscillatory, too. In both cases, the critical values of the dynamo number is lowered due to spatio‐temporal nonlocality.When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos  相似文献   

4.
Mechanisms of nonhelical large‐scale dynamos (shear‐current dynamo and effect of homogeneous kinetic helicity fluctuations with zero mean) in a homogeneous turbulence with large‐scale shear are discussed. We have found that the shearcurrent dynamo can act even in random flows with small Reynolds numbers. However, in this case mean‐field dynamo requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number, Pmcr = 0.24, is determined using second order correlation approximation (or first‐order smoothing approximation) for a background random flow with a scale‐dependent viscous correlation time τc = (νk 2)–1 (where ν is the kinematic viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear‐current dynamo occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating large‐scale magnetic fields in a broad class of astrophysical turbulent systems with large‐scale shear. On the other hand, mean‐field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that contains, e.g., low‐frequency oscillations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Self‐consistent convective dynamo simulations in wedge‐shaped spherical shells are presented. Differential rotation is generated by the interaction of convection with rotation. Equatorward acceleration and dynamo action are obtained only for sufficiently rapid rotation. The angular velocity tends to be constant along cylinders. Oscillatory large‐scale fields are found to migrate in the poleward direction. Comparison with earlier simulations in full spherical shells and Cartesian domains is made (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Using simulations of helically driven turbulence, it is shown that the ratio of kinetic to magnetic energy dissipation scales with the magnetic Prandtl number in power law fashion with an exponent of approximately 0.6. Over six orders of magnitude in the magnetic Prandtl number the magnetic field is found tobe sustained by large‐scale dynamo action of alphasquared type. This work extends a similar finding for small magnetic Prandtl numbers to the regime of large magnetic Prandtl numbers. At large magnetic Prandtl numbers, most of the energy is dissipated viscously, lowering thus the amount of magnetic energy dissipation, which means that simulations can be performed at magnetic Reynolds numbers that are large compared to the usual limits imposed by a given resolution. This is analogous to an earlier finding that at small magnetic Prandtl numbers, most of the energy is dissipated resistively, lowering the amount of kinetic energy dissipation, so simulations can then be performed at much larger fluid Reynolds numbers than otherwise. The decrease in magnetic energy dissipation at large magnetic Prandtl numbers is discussed in the context of underluminous accretion found in some quasars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The motivation for considering distributed large scale dynamos in the solar context is reviewed in connection with the magnetic helicity constraint. Preliminary accounts of 3-dimensional direct numerical simulations (in spherical shell segments) and simulations of 2-dimensional mean field models (in spherical shells) are presented. Interesting similarities as well as some differences are noted. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of nonlinear transition to turbulence in non‐rotating wall‐bounded shear flows. To illustrate this idea, we describe some recent results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and should be applicable to many astrophysical problems involving a shear flow and non‐axisymmetric instabilities of shearinduced axisymmetric toroidal velocity or magnetic fields, such as Kelvin‐Helmholtz, magnetorotational, Tayler or global magnetoshear instabilities. In the light of several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHD dynamo processes in high‐Reynolds number shear flows could act as a large‐scale driving mechanism of turbulent flows that would in turn generate an independent small‐scale dynamo. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In light of new results, the one‐dimensional mean‐field dynamo model of Brandenburg & Käpylä (2007) with dynamical quenching and a nonlocal Babcock‐Leighton α effect is re‐examined for the solar dynamo. We extend the one‐dimensional model to include the effects of turbulent downward pumping (Kitchatinov & Olemskoy 2011), and to combine dynamical quenching with shear. We use both the conventional dynamical quenching model of Kleeorin & Ruzmaikin (1982) and the alternate one of Hubbard & Brandenburg (2011), and confirm that with varying levels of non‐locality in the α effect, and possibly shear as well, the saturation field strength can be independent of the magnetic Reynolds number. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The instability of a supercritical Taylor‐Couette flow of a conducting fluid with resting outer cylinder under the influence of a uniform axial electric current is investigated for magnetic Prandtl number Pm = 1. In the linear theory the critical Reynolds number for axisymmetric perturbations is not influenced by the current‐induced axisymmetric magnetic field but all axisymmetric magnetic perturbations decay. The nonaxisymmetric perturbations with m = 1 are excited even without rotation for large enough Hartmann numbers (“Tayler instability”). For slow rotation their growth rates scale with the Alfvén frequency of the magnetic field but for fast rotation they scale with the rotation rate of the inner cylinder. In the nonlinear regime the ratio of the energy of the magnetic m = 1 modes and the toroidal background field is very low for the non‐rotating Tayler instability but it strongly grows if differential rotation is present. For super‐Alfv´enic rotation the energies in the m = 1 modes of flow and field do not depend on the molecular viscosity, they are almost in equipartition and contain only 1.5 % of the centrifugal energy of the inner cylinder. The geometry of the excited magnetic field pattern is strictly nonaxisymmetric for slow rotation but it is of the mixed‐mode type for fast rotation – contrary to the situation which has been observed at the surface of Ap stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The effects of uniform horizontal shear on a stably stratified layer of gas is studied. The system is initially destabilized by a magnetically buoyant flux tube pointing in the cross‐stream direction. The shear amplifies the initial field to Lundquist numbers of about 200–400, but then its value drops to about 100–300, depending on the value of the sub‐adiabatic gradient. The larger values correspond to cases where the stratification is strongly stable and nearly isothermal. At the end of the runs the magnetic field is nearly axisymmetric, i.e. uniform in the streamwise direction. In view of Cowling's theorem the sustainment of the field remains a puzzle and may be due to subtle numerical effects that have not yet been identified in detail. In the final state the strength of the magnetic field decreases with height in such a way that the field is expected to be unstable. Low amplitude oscillations are seen in the vertical velocity even at late times, suggesting that they might be persistent (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Themagnetorotational instability (MRI) in cylindrical Taylor‐Couette flow with external helical magnetic field is simulated for infinite and finite aspect ratios. We solve the MHD equations in their small Prandtl number limit and confirm with timedependent nonlinear simulations that the additional toroidal component of the magnetic field reduces the critical Reynolds number from O (106) (axial field only) to O (103) for liquid metals with their small magnetic Prandtl number. Computing the saturated state we obtain velocity amplitudes which help designing proper experimental setups. Experiments with liquid gallium require axial field ∼50 Gauss and axial current ∼4 kA for the toroidal field. It is sufficient that the vertical velocity uz of the flow can be measured with a precision of 0.1 mm/s.We also show that the endplates enclosing the cylinders do not destroy the traveling wave instability which can be observed as presented in earlier studies. For TC containers without and with endplates the angular momentum transport of the MRI instability is shown as to be outwards. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Azimuthal magnetorotational instability is a mechanism that generates nonaxisymmetric field pattern. Nonlinear simulations in an infinite Taylor-Couette system with current-free external field show, that not only the linearly unstable mode m = 1 appears, but also an inverse cascade transporting energy into the axisymmetric field is possible. By varying the Reynolds number of the flow and the Hartmann number for the magnetic field, we find that the ratio between axisymmetric (m = 0) and dominating nonaxisymmetric mode (m = 1) can be nearly free chosen. On the surface of the outer cylinder this mode distribution appears similarly, but with weaker axisymmetric fields.We do not find significant differences in the case that a constant current within the flow is added. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The nonaxisymmetric Tayler instability of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two coaxial cylinders without endplates. The inner cylinder is considered as so thin that the limit of Rin → 0 can be computed. The magnetic Prandtl number is varied over many orders of magnitudes but the azimuthal mode number of the perturbations is fixed to m = 1. In the linear approximation the critical magnetic field amplitudes and the growth rates of the instability are determined for both resting and rotating cylinders. Without rotation the critical Hartmann numbers do not depend on the magnetic Prandtl number but this is not true for the corresponding growth rates. For given product of viscosity and magnetic diffusivity the growth rates for small and large magnetic Prandtl number are much smaller than those for Pm = 1. For gallium under the influence of a magnetic field at the outer cylinder of 1 kG the resulting growth time is 5 s. The minimum electric current through a container of 10 cm diameter to excite the instability is 3.20 kA. For a rotating container both the critical magnetic field and the related growth times are larger than for the resting column (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
16.
Cool weakly ionized gaseous rotating disk form the basis for many models in astrophysics objects. Instabilities against perturbations in such disks play an important role in the theory of the formation of stars and planets. Traditionally, axisymmetric magnetohydrodynamic (MHD) and recently Hall‐MHD instabilities have been thoroughly studied as providers of an efficient mechanism for radial transfer of angular momentum, and of density radial stratification. In the current work, the Hall instability against axisymmetric perturbations in incompressible rotating fluid in external poloidal and toroidal magnetic field is considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The components of the total stress tensor (Reynolds stress plus Maxwell stress) are computed within the quasilinear approximation for a driven turbulence influenced by a large‐scale magnetic background field. The conducting fluid has an arbitrary magnetic Prandtl number and the turbulence without the background field is assumed as homogeneous and isotropic with a free Strouhal number St. The total large‐scale magnetic tension is always reduced by the turbulence with the possibility of a ‘catastrophic quenching’ for large magnetic Reynolds number Rm so that even its sign is reversed. The total magnetic pressure is enhanced by turbulence in the high‐conductivity limit but it is reduced in the low‐conductivity limit. Also in this case the sign of the total pressure may reverse but only for special turbulences with sufficiently large St > 1. The turbulence‐induced terms of the stress tensor are suppressed by strong magnetic fields. For the tension term this quenching grows with the square of the Hartmann number of the magnetic field. For microscopic (i.e. small) diffusivity values the magnetic tension term becomes thus highly quenched even for field amplitudes much smaller than their equipartition value. In the opposite case of large‐eddy simulations the magnetic quenching is only mild but then also the turbulence‐induced Maxwell tensor components for weak fields remain rather small (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
One of the most convenient approaches to observe experimentally the magnetorotational instability (MRI) is to use a magnetized Taylor‐Couette setup. The flow of liquid metal between two rotating, concentric cylinders can become unstable in the presence of an external magnetic field. One of the issues which should be addressed when designing such an experiment is the influence of plates enclosing the cylinders fromthe top and the bottom. In this paper we discuss properties of the boundary layer which arises near these plates. Our primary concern is the importance of this layer in the MRI experiment PROMISE. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this paper, we investigate the time evolution of an accreting magneto‐fluid with finite conductivity. For the case of a thin disk, the fluid equations along with Maxwell's equations are derived in a simplified, one‐dimensional model that neglects the latitudinal dependence of the flow. The finite electrical conductivity of the plasma is taken into account by Ohm's law; however, the shear viscous stress is neglected, as well as the self‐gravity of the disk. In order to solve the integrated equations that govern the dynamical behaviour of the magneto‐fluid, we have used a self‐similar solution. We introduce two dimensionless variables, S0 and εϱ, which represent the size of the electrical conductivity and the density behaviour with time, respectively. The effect of each of these on the structure of the disk is studied. While the pressure is obtained simply by solving an ordinary differential equation, the density, the magnetic field, the radial velocity, and the rotational velocity are presented analytically. The solutions show that the S0 and εϱ parameters affect the radial thickness of the disk. Also, radial velocity and gas pressure are more sensitive to the electrical conductivity in the inner regions of disk. Moreover, the parameter εϱ has a more significant effect on the physical quantities for small radii. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号