首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Magnetorotational instability (MRI) is one of the most important and most common instabilities in astrophysics. It is widely accepted that it serves as a source of turbulent viscosity in accretion disks – the most energy efficient objects in the Universe. However it is very difficult to bring this process down on earth and model it in a laboratory experiment. Several different approaches have been proposed, one of the most recent is PROMISE (Potsdam‐ROssendorf Magnetorotational InStability Experiment). It consists of a flow of a liquid metal between two rotating cylinders under applied current‐free spiral magnetic field. The cylinders must be covered with plates which introduce additional end‐effects which alter the flow and make it more difficult to clearly distinguish between MRI stable and unstable state. In this paper we propose simple and inexpensive improvement to the PROMISE experiment which would reduce those undesirable effects. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We discuss an electromagnetic sampling calorimeter for the detection of very high energy gamma-rays on the Moon, which is based on the use of scintillating cylinders and plates imbedded in the lunar soil. The use of lunar soil as a calorimeter radiator reduces the weight of the material to be transported to the Moon and minimises environmental impact. Plastic scintillator bars inserted into the regolith about 1.5 m are the active elements of this instrument: at the surface, each bar is terminated by a plastic scintillator plate to veto high energy charge particles. The readout system for the scintillator bars and plates are based on recently developed single photon solid state detectors (Silicon Photomultiplier, SiPM), extremely compact, sturdy and sensitive devices suited for detecting small light pulses in a space experiment. The performance of a regolith-scintillator calorimeter is evaluated and the relevant parameters are optimised using a GEANT4 simulation.  相似文献   

3.
Magnetorotational instability in a rotating liquid metal annulus   总被引:1,自引:0,他引:1  
Although the magnetorotational instability (MRI) has been widely accepted as a powerful accretion mechanism in magnetized accretion discs, it has not been realized in the laboratory. The possibility of studying MRI in a rotating liquid metal annulus (Couette flow) is explored by local and global stability analysis. Stability diagrams are drawn in dimensionless parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using easy-to-handle metals such as gallium. Practical issues of this proposed experiment are discussed.  相似文献   

4.
Themagnetorotational instability (MRI) in cylindrical Taylor‐Couette flow with external helical magnetic field is simulated for infinite and finite aspect ratios. We solve the MHD equations in their small Prandtl number limit and confirm with timedependent nonlinear simulations that the additional toroidal component of the magnetic field reduces the critical Reynolds number from O (106) (axial field only) to O (103) for liquid metals with their small magnetic Prandtl number. Computing the saturated state we obtain velocity amplitudes which help designing proper experimental setups. Experiments with liquid gallium require axial field ∼50 Gauss and axial current ∼4 kA for the toroidal field. It is sufficient that the vertical velocity uz of the flow can be measured with a precision of 0.1 mm/s.We also show that the endplates enclosing the cylinders do not destroy the traveling wave instability which can be observed as presented in earlier studies. For TC containers without and with endplates the angular momentum transport of the MRI instability is shown as to be outwards. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this paper we make an effort to understand the interaction of turbulence generated by the magnetorotational instability (MRI) with turbulence from other sources, such as supernova explosions (SNe) in galactic disks. First we perform a linear stability analysis (LSA) of non‐ideal MRI to derive the limiting value of Ohmic diffusion that is needed to inhibit the growth of the instability for different types of rotation laws. With the help of a simple analytical expression derived under first‐order smoothing approximation (FOSA), an estimate of the limiting turbulence level and hence the turbulent diffusion needed to damp the MRI is derived. Secondly, we perform numerical simulations in local cubes of isothermal nonstratified gas with external forcing of varying strength to see whether the linear result holds for more complex systems. Purely hydrodynamic calculations with forcing, rotation and shear are made for reference purposes, and as expected, non‐zero Reynolds stresses are found. In the magnetohydrodynamic calculations, therefore, the total stresses generated are a sum of the forcing and MRI contributions. To separate these contributions, we perform reference runs with MRI‐stable shear profiles (angular velocity increasing outwards), which suggest that the MRI‐generated stresses indeed become strongly suppressed as function of the forcing. The Maxwell to Reynolds stress ratio is observed to decrease by an order of magnitude as the turbulence level due to external forcing exceeds the predicted limiting value, which we interpret as a sign of MRI suppression. Finally, we apply these results to estimate the limiting radius inside of which the SN activity can suppress the MRI, arriving at a value of 14 kpc (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The PROMISE experiment relies on the fact that the critical Reynolds number for the appearance of the magnetorotational instability (MRI) in liquid metal flows drastically decreases when the purely axial magnetic field is replaced by a helical one. We report the results of a modified version of this experiments in which the radial electrical boundary conditions are changed. Special focus is laid on the role of the radial jet region where the two Ekman vortices from the top and the bottom meet each other. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The magnetorotational instability (MRI) of differential rotation under the simultaneous presence of axial and azimuthal components of the (current‐free) magnetic field is considered. For rotation with uniform specific angular momentum the MHD equations for axisymmetric perturbations are solved in a local short‐wave approximation. All the solutions are overstable for Bz · Bϕ ≠ 0 with eigenfrequencies approaching the viscous frequency. For more flat rotation laws the results of the local approximation do not comply with the results of a global calculation of the MHD instability of Taylor‐Couette flows between rotating cylinders. – With Bϕ and Bz of the same order the traveling‐mode solutions are also prefered for flat rotation laws such as the quasi‐Kepler rotation. For magnetic Prandtl number Pm 0 they scale with the Reynolds number of rotation rather than with the magnetic Reynolds number (as for standard MRI) so that they can easily be realized in MHD laboratory experiments. – Regarding the nonaxisymmetric modes one finds a remarkable influence of the ratio Bϕ/Bz only for the extrema. For Bϕ ≫ Bz and for not too small Pm the nonaxisymmetric modes dominate the traveling axisymmetric modes. For standard MRI with Bz ≫ Bϕ, however, the critical Reynolds numbers of the nonaxisymmetric modes exceed the values for the axisymmetric modes by many orders so that they are never prefered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present the archive of the wide‐field plate observations obtained at the University Observatory Jena, which is stored at the Astrophysical Institute of the Friedrich Schiller University Jena. The archive contains plates taken in the period February 1963 to December 1982 with the 60/90/180‐cm Schmidt telescope of the university observatory. A computer‐readable version of the plate metadata catalogue (for 1257 plates), the logbooks, as well as the digitized Schmidt plates in low and high resolution are now accessible to the astronomical community.This paper describes the properties of the archive, as well as the processing procedure of all plates in detail. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We shocked calcite in an unconfined environment by launching small marble cylinders at 0.8–5.5 km s?1 into aluminum or copper plates, producing shock stresses between 5 and 79 GPa. The resulting 5–20 mm craters contained intimately mixed clastic and molten projectile residues over the entire pressure range, with melting commencing already at 5 GPa. Stoichiometrically pure calcite melts were not observed as all melts contained target metal. Some of these residues were distinctly depleted in CO2 and some contained even tiny CaO crystals, thus illustrating partial to complete loss of CO2. We interpret a thin seam of finely crystalline calcite to be the product of back reactions between CaO and CO2. The amount of carbonate residue in these craters, especially those at low velocities (<2 km s?1), is dramatically less than that of silicate impactors in similar cratering experiments, and we suggest that this is due to substantial outgassing of CO2. Similarly, the volume of carbonate melts relative to the volume of limestone or dolomite in many terrestrial crater structures seems insignificant as well, as is the volume of carbonate melt compared to the volume of impact melts derived from silicates. These volume considerations suggest that volatilization of CO2 is the dominant process in carbonate‐containing targets. Because we have difficulties in explaining naturally occurring calcite melts by shock processes in dolomite‐dominated targets, we speculate—essentially via process of elimination—that such carbonate melt blebs might be condensation products from an impact‐produced vapor cloud.  相似文献   

10.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

11.
Self‐consistent convective dynamo simulations in wedge‐shaped spherical shells are presented. Differential rotation is generated by the interaction of convection with rotation. Equatorward acceleration and dynamo action are obtained only for sufficiently rapid rotation. The angular velocity tends to be constant along cylinders. Oscillatory large‐scale fields are found to migrate in the poleward direction. Comparison with earlier simulations in full spherical shells and Cartesian domains is made (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma‐ray spectroscopy (GRS) experiment in a Dawn‐like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma‐ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte‐Carlo code. GRS is sensitive to depths below the optical surface (to ≈20–50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur‐depleted (e.g., Nittler et al. 2001 ) or desiccated surface layer. We find that 3σ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft‐deck‐mounted configuration at the Odyssey end‐of‐mission energy resolution, FWHM = 5.7 keV at 1332 keV. The calculated compositional uncertainties are smaller than the compositional differences between carbonaceous chondrite subclasses.  相似文献   

13.
Stability of thin hot Keplerian discs is investigated asymptotically in small disc's aspect ratio, ε. The study is carried out in the local approximation for short vertical waves in the disc‐thickness scale. Besides the radial rotation shear and the vertical magnetic field, the background configuration is characterized by a vertically near‐constant temperature profile with a small vertical gradient. The temperature‐gradient term in Ohm's law, which characterizes the thermomagnetic transport is found to be of the order of ε. The effect of the thermomagnetic transport slightly modifies the conventional magnetorotational instability (MRI), while a new thermomagnetic instability (TMI) emerges in regions of the wavenumber space where MRI is absent. Explicit solutions are obtained for a wide range of values of plasma beta, β, and thermomagnetic transport coefficient, λ. In particular, it is shown for λ ≪ 1 that the MRI dominates in weak magnetic fields, β ≫ 1, while the TMI is exhibited in strong magnetic fields, β ∼ 1, also with the growth rate of the order of inverse rotation period (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Numerical investigation of the two‐dimensional magnetic reconnection is given in the context of the nonlinear evolution of the Magneto‐Rotational Instability (MRI). With a careful comparison to various theories using both one‐ and twodimensional analysis, it is found that a new stabilizing effect of the centrifugal force on tearing instability must be present in the specific geometry of the MRI.Magnetic reconnection might play a key role to the formation of the nonaxisymmetric structures observed in MRI experiments. The results may also be useful for the estimate of the accretion rate in various astrophysical objects. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We study the magnetorotational instability in cylindrical Taylor‐Couette flow, with the (vertically unbounded) cylinders taken to be perfect conductors, and with externally imposed spiral magnetic fields. The azimuthal component of this field is generated by an axial current inside the inner cylinder, and may be slightly stronger than the axial field. We obtain an instability beyond the Rayleigh line, for Reynolds numbers of order 1000 and Hartmann numbers of order 10, and independent of the (small) magnetic Prandtl number. For experiments with Rout = 2Rin = 10 cm and Ωout = 0.27 Ωin, the instability appears for liquid sodium for axial fields of ∼20 Gauss and axial currents of ∼1200 A. For gallium the numbers are ∼50 Gauss and ∼3200 A. The vertical cell size is about twice the cell size known for nonmagnetic experiments. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The ~2490 Ma DS4 impact layer in the Dales Gorge Member is the only bed in the Brockman Iron Formation (Hamersley Group, Western Australia) known to contain “splash form” impact spherules. At a newly discovered site in Munjina Gorge (MG), the internal stratigraphy of the DS4 impact layer differs from previously known occurrences; it ranges from 36 to 57 cm in total thickness and consists of two distinct subunits. The lower subunit contains abundant cobble‐ to boulder‐scale intraclasts and spherules supported by a finer matrix. We interpret this subunit as the product of poorly cohesive debris flows. The upper subunit is 11–15 cm of low‐density turbidites. The DS4 layer also consists of two newly recognized subunits at Yampire Gorge (YG). The lower subunit is rich in well‐sorted spherules, 0–22 cm thick, and comprises an unstratified bedform with an irregular or swaley upper surface. This is overlain by 2 dm‐scale, fine‐grained, irregularly laminated beds that we interpret as low density turbidites laterally equivalent to the upper subunit at MG. The bedform at YG could be the lateral equivalent of the debrite at MG, genetically related to the overlying turbidites, or a product of impact tsunami‐induced bottom return flow. Other DS4 layer sites that have debrites similar to the one at MG are geographically separated from one another by sites that both lack debrite facies and feature well‐sorted spherules like YG. These characteristics suggest the DS4 layer had a complex depositional history that generated multiple debrites.  相似文献   

18.
Abstract— Mössbauer studies of the samples from the Cretaceous‐Tertiary (K‐T) boundary layer at Gubbio, Italy show that iron appears mainly in two phases, magnetically ordered hematite and a paramagnetic silicate phase. The average particle size of hematite is estimated to be in the range of 16 to 27 nm from transmission electron micrographs and lack of a Morin transition. The hyperfine magnetic field at the iron nucleus is observed to be somewhat less than that of bulk hematite, which may be explained by collective magnetic excitation. Stepwise heating up to 1000°C shows a decomposition pattern of the paramagnetic phase, which suggests it to be a tri‐octahedral layer silicate. The iron‐bearing phases found in the bulk sedimentary K‐T boundary material are different from those found in the spherules separated from this material indicating that the redox conditions changed rapidly after the impact, becoming more oxidizing during the period these bulk phases were formed.  相似文献   

19.
Quasi‐periodic oscillations (QPO) seen in the X‐ray fluxes of individual neutron stars and black hole sources are one of most intriguing phenomena in today's astrophysics. The QPO nature is visibly determined by super‐strong Einstein's gravity. I argue here that it also profoundly depends on the MRI turbulence in accretion flows. Understanding the QPO physics may therefore guide accretion theory out of its present state of confusion. Readers will find here an up‐to‐date, comprehensible account of what is known, and what is not, about the QPO physics. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Abstract– As part of the MEMIN research program this project is focused on shock deformation experimentally generated in dry, porous Seeberger sandstone in the low shock pressure range from 5 to 12.5 GPa. Special attention is paid to the influence of porosity on progressive shock metamorphism. Shock recovery experiments were carried out with a high‐explosive set‐up that generates a planar shock wave, and using the shock impedance method. Cylinders of sandstone of average grain size of 0.17 mm and porosity of about 19 vol%, and containing some 96 wt% SiO2, were shock deformed. Shock effects induced with increasing shock pressure include: (1) Already at 5 GPa the entire pore space is closed; quartz grains show undulatory extinction. On average, 134 fractures per mm are observed. Dark vesicular melt (glass) of the composition of the montmorillonitic phyllosilicate component of this sandstone occurs at an average amount of 1.6 vol%. (2) At 7.5 GPa, quartz grains show weak but prominent mosaicism and the number of fractures increases to 171 per millimeter. Two additional kinds of melt, both based on phyllosilicate precursor, could be observed: a light colored, vesicular melt and a melt containing large iron particles. The total amount of melt (all types) increased in this experiment to 2.4 vol%. Raman spectroscopy confirmed the presence of shock‐deformed quartz grains near the surface. (3) At 10 and 12.5 GPa, quartz grains also show weak but prominent mosaicism, the number of fractures per mm has reached a plateau value of approximately 200, and the total amount of the different melt types has increased to 4.8 vol%. Diaplectic quartz glass could be observed locally near the impacted surface. In addition, local shock effects, most likely caused by multiple shock wave reflections at sandstone‐container interfaces, occur throughout the sample cylinders and include locally enhanced formation of PDF, as well as shear zones associated with cataclastic microbreccia, diaplectic quartz glass, and SiO2 melt. Overall findings from these first experiments have demonstrated that characteristic shock effects diagnostic for the confirmation of impact structures and suitable for shock pressure calibration are rare. So far, they are restricted to the limited formation of PDF and diaplectic quartz glass at shock pressures of 10 GPa and above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号