首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the transient nature of supersoft sources (SSSs) in M 31, we compared SSS candidates ofthe XMM‐Newton Deep Survey, ROSAT PSPC surveys and the Chandra catalogues in the same field. We found 40 SSSs in the XMM‐Newton observations. While 12 of the XMM‐Newton sources were brighter than the limiting flux of the ROSAT PSPC survey, only two were detected with ROSAT ∼10 yr earlier. Five correlate with recent optical novae which explains why they were not detected by ROSAT. The remaining 28 XMM‐Newton SSSs have fluxes below the ROSAT detection threshold. Nevertheless we found one correlation with a ROSAT source, which had significantly larger fluxes than during the XMM‐Newton observations. Ten of the XMM‐Newton SSSs were detected by Chandra with <1– ∼6yr between the observations. Five were also classified as SSSs by Chandra. Of the 30 ROSAT SSSs three were confirmed with XMM‐Newton, while for 11 sources other classifications are suggested. Of the remaining 16 sources one correlates with an optical nova. Of the 42 Chandra very‐soft sources five are classified as XMM‐Newton SSSs, while for 22 we suggest other classifications. Of the remaining 15 sources, nine are classified as transient by Chandra, one of them correlates with an optical nova. These findings underlined the high variability of the sources of this class and the connection between SSSs and optical novae. Only three sources, were detected by all three missions as SSSs. Thus they are visible for more than a decade, despite their variability (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The presentations made at the workshop “XMM‐Newton: The Next Decade”, held at ESAC from 4th to the 6th of July 2007, contained an overwhelming amount of new results and well justified scientific questions that can be addressed by observations with XMM‐Newton. XMM‐Newton has over the next decade a solid scientific case. Given the high impact of X‐ray observations, XMM‐Newton operations are not only a matter for “X‐ray astrophysics”, but also of fundamental importance for astrophysics in general. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We review some recent results on the identification and characterisation of Active Galactic Nuclei (AGN) obtained by cross correlating X‐ray surveys with infrared and submillimetre surveys. We also look toward the scientific gains that could be achieved from an XMM‐Newton survey of the medium‐deep legacy fields that are being observed at ≈ 1–850 μm. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this article I will highlight selected results from XMM‐Newton observations of stellar coronae, emphasizing the specific XMM‐Newton capabilities in terms of high‐resolution spectroscopy, its long‐look capability and its optical monitor. I will focus on results on “normal”, cool stars and present science areas hitherto largely unexploired by XMM‐Newton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A brief overview of some highlights of high spectral resolution X‐ray observations of AGN is given, mainly obtained with the RGS of XMM‐Newton. Future prospects for such observations with XMM‐Newton are given. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present X‐ray spectral analysis of the super‐soft source CAL87 using ASCA, Chandra, XMM‐Newton observations. Early ASCA CCD spectrum reported a strong oxygen absorption edge, which is considered to originate in the an optically thick white‐dwarf atmosphere. On the other hand, contemporaneous grating observations by Chandra and XMM‐Newton indicate emission line dominated spectra, which obviously indicate the optically thin origin. Fitting all the available CCD (ASCA and XMM‐Newton) and grating spectra (XMM‐Newton and Chandra) simultaneously, we show that the CAL87 X‐ray energy spectrum is in fact composed of both an optically thick component with deep absorption edges and an optically thin component with numerous emission lines. The current result supports the standard SSS model that the primary source of X‐ray emission is nuclear burning in the white dwarf atmosphere, surrounded by a highly photoionised, optically thin corona (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Both Chandra and XMM‐Newton have performed long look programs for studying the YSO physics. I will discuss recent results on the controversial issue of Class 0 YSO X‐ray emission, the observational evidence of magnetic funnels interconnecting the YSO with its circumstellar disk and the Fe 6.4 keV fluorescent line emission and its origin. While recent results of the XMM‐Newton DROXO program challenge the “standard” interpretation of the Fe 6.4 kev line origin as due to photoionized fluorescing disk material, the discovery of X‐ray excited Ne 12.81 μ m line is a clear evidence of the interaction between X‐rays and disk material. Future long look observations with XMM‐Newton are required to clarify the X‐ray effects on YSO disk. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
《Astronomische Nachrichten》2017,338(2-3):256-261
This article provides a summary of XMM ‐Newton highlights on stellar tidal disruption events. First found with ROSAT , ongoing and upcoming sky surveys will detect these events in the thousands. In X‐rays, tidal disruption events (TDEs ) provide us with powerful new probes of accretion physics under extreme conditions and on short timescales and of relativistic effects near the super‐massive black holes (SMBHs) , of the formation and evolution of disk winds near or above the Eddington limit, and of the processes of high‐energy emission from newly launched radio jets. TDEs serve as signposts of the presence of dormant single black holes at the cores of galaxies, and of binary black holes as well, since TDE lightcurves are characteristically different in the latter case. XMM ‐Newton has started to contribute to all of these topics, and a rich discovery space is opening up in the next decade.  相似文献   

9.
We review a selection of recent papers describing solar wind charge exchange emission occurring in the Earth's exosphere as seen by the X‐ray observatory XMM‐Newton. We discuss the detection of this emission, the occurrence with respect to the solar cycle and solar activity, and various spectral signatures observed. We also describe a model developed to predict the X‐ray signal from exospheric charge exchange as would be detected by XMM‐Newton, given the upstream solar wind conditions obtained from in situ solar wind monitors (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Active galaxies     
In this paper I will review, in an unavoidably incomplete and biased way, the main results obtained by XMM‐Newton on Active Galactic Nuclei. I will then highlight the major issues still open in which XMM‐Newton can still give important contributions, expecially if the observing programs will shift in the future towards more long exposures of single objects and observations of large samples. I will also argue in favour of a legacy program consisting of good S/N observations of a flux‐limited, sizeable sample of AGN. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
XMM‐Newton and Chandra have boosted our knowledge about the X‐ray emission of early‐type stars (spectral types OB and Wolf‐Rayet). However, there are still a number of open questions that need to be addressed in order to fully understand the X‐ray spectra of these objects. Many of these issues require high‐resolution spectroscopy or monitoring of a sample of massive stars. Given the moderate X‐ray brightness of these targets, rather long exposure times are needed to achieve these goals. In this contribution, we review our current knowledge in this field and present some hot topics that could ideally be addressed with XMM‐Newton over the next decade. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
In preparation for XMM‐Newton operations beyond the 10‐year design lifetime ESA instigated an independent review of all aspects of the mission. Unsurprisingly, the review found that the scientific interest in extending the mission is very high and likely to remain so in the foreseeable future. Most importantly, all the elements of the XMM‐Newton mission were found to be stable and trouble free with sufficient consumables and life‐limited items to allow operations of the mission until at least 2018. The review endorsed the proposal to combine elements of the Flight Control Team with those from INTEGRAL and remove real‐time instrument monitoring from ESAC in order to reduce costs and improve efficiency. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The Planck Satellite will survey the entire sky in 9 millimeter/submillimeter bands and detect thousands of galaxy clusters via their thermal Sunyaev‐Zel'dovich (SZ) effect. The unprecedented volume of the survey will permit the construction of a unique catalog of massive clusters out to redshifts of order unity. We describe the expected contents of this catalog and use an empirical model of the intra‐cluster gas to predict the X‐ray properties of Planck SZ clusters. Using this information we show how a ∼10 Ms follow‐up program on XMM‐Newton could increase by ∼100‐fold the number of clusters with measured temperatures in the redshift range z = 0.5–1. Such a large sample of well‐studied massive clusters at these redshifts would be a powerful cosmological tool and a significant legacy for XMM‐Newton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The XMM‐Newton Extended Survey of the Taurus Molecular Cloud (XEST) is a survey of the nearest large star‐forming region, the Taurus Molecular Cloud (TMC), making use of all instruments on board the XMM‐Newton X‐ray observatory. The survey, presently still growing, has provided unprecedented spectroscopic results from nearly every observed T Tauri star, and from ≈50% of the studied brown dwarfs and protostars. The survey includes the first coherent statistical sample of high‐resolution spectra of T Tauri stars, and is accompanied by an U ‐band/ultraviolet imaging photometric survey of the TMC. XEST led to the discovery of new, systematic X‐ray features not possible before with smaller samples, in particular the X‐ray soft excess in classical T Tauri stars and the Two‐Absorber X‐ray (TAX) spectra of jet‐driving T Tauri stars. This paper summarizes highlights from XEST and reviews the key role of this large project. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We have identified three possible ways in which future XMM‐Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X‐ray transient Cen X‐4 in quiescence one can use the RGS spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X‐ray spectral fitting of the pn and MOS spectra and allows us to investigate whether the variability observed in the quiescent X‐ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in NH. This will test whether the soft thermal spectral component can indeed be due to the hot thermal glow of the neutron star. Potentially such an observation could also reveal redshifted spectral lines from the neutron star surface. Second, XMM‐Newton observations of radius expansion type I Xray bursts might reveal redshifted absorption lines from the surface of the neutron star. Third, XMM‐Newton observations of eclipsing quiescent low‐mass X‐ray binaries provide the eclipse duration. With this the system inclination can be determined accurately. The inclination determined from the X‐ray eclipse duration in quiescence, the rotational velocity of the companion star and the semi‐amplitude of the radial velocity curve determined through optical spectroscopy, yield the neutron star mass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We assessed the scientific productivity of XMM‐Newton by examining XMM‐Newton publications and data usage statistics. We analyse 3272 refereed papers, published until the end of 2012, that directly use XMM‐Newton data. The SAO/NASA Astrophysics Data System (ADS) was used to provide additional information on each paper including the number of citations. For each paper, the XMM‐Newton observation identifiers and instruments used to provide the scientific results were determined. The identifiers were used to access the XMM‐Newton Science Archive (XSA) to provide detailed information on the observations themselves and on the original proposals. The information obtained from these sources was then combined to allow the scientific productivity of the mission to be assessed. Since around three years after the launch of XMM‐Newton there have been around 300 refereed papers per year that directly use XMM‐Newton data. After more than 13 years in operation, this rate shows no evidence that it is decreasing. Since 2002, around 100 scientists per year become lead authors for the first time on a refereed paper which directly uses XMM‐Newton data. Each refereed XMM‐Newton paper receives around four citations per year in the first few years with a long‐term citation rate of three citations per year, more than five years after publication. About half of the articles citing XMM‐Newton articles are not primarily X‐ray observational papers. The distribution of elapsed time between observations taken under the Guest Observer programme and first article peaks at 2 years with a possible second peak at 3.25 years. Observations taken under the Target of Opportunity programme are published significantly faster, after one year on average. The fraction of science time taken until the end of 2009 that has been used in at least one article is ∼90%. Most observations were used more than once, yielding on average a factor of two in usage on available observing time per year. About 20 % of all slew observations have been used in publications. The scientific productivity of XMM‐Newton measured by the publication rate, number of new authors and citation rate, remains extremely high with no evidence that it is decreasing after more than 13 years of operations.  相似文献   

18.
Anomalous X‐ray Pulsars and Soft Gamma‐ray Repeaters are believed to be magnetars: isolated neutron stars powered by the decay of extremely high magnetic fields. We review some of the main results obtained with XMM‐Newton and discuss the prospects for future observations of this small but extremely interesting class of objects. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
First studies of the X‐ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM‐Newton observations led to a better knowledge of the X‐ray source population. An XMM‐Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2–4.5 keV luminosity of 1035 erg s–1. EPIC hardness ratios as well as informations from earlier X‐ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X‐ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as “hard”. These sources may either be XRBs or Crab‐like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X‐ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM‐Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X‐ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Some key numbers about the XMM‐Newton users, usage of the mission and the scientific outcome are provided. The background for selecting the topic, the preparation work, the organization and the corresponding committees are briefly described. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号