首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influences of the mass, moment of inertia, rotation, absence of stability in the atmosphere and some other parameters of neutron stars on the evolution of pulsars are examined. It is shown that the locations and evolutions of soft gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the period versus period derivative diagram can be explained adopting values of B < 1014 G for these objects if they have smaller mass (e.g. about 0.5 Solar mass) compared to the conventionally adopted values of mass. This approach gives the possibility to explain many properties of different types of pulsar.  相似文献   

2.
We analyze the possibility that anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) originate from radio pulsars subjected to considerable and prolonged glitches. The observed characteristics of such pulsars, their association with supernova remnants, and their evolution in the P-? diagram with allowance made for the actual age of the possible AXP and SGR progenitors are shown to be in conflict with the suggested scenario.  相似文献   

3.
At present, it is widely believed that anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), rotational radio transients (RRATs), compact central objects (CCOs) in supernova remnants, and X-ray dim isolated neutron stars (XDINSs) belong to different classes of anomalous objects in which the central bodies are isolated neutron stars. Previously, we have shown that AXPs and SGRs can be described in terms of the drift model for parameters of the central neutron star typical of radio pulsars (rotation periods P ~ 0.1–1 s and surface magnetic fields B ~ 1011–1013 G). Here, we show that some of the peculiarities of the sources under consideration can be explained by their geometry (in particular, by the angle β between the rotation axis and the magnetic moment). If β ? 10° (an aligned rotator), the drift waves in the outer layers of the neutron star magnetosphere can account for the observed periodicity in the radiation. For large β (a nearly orthogonal rotator), the observed modulation of the radiation and its short bursts can be explained by mass accretion from the ambient medium (e.g., a relic disk).  相似文献   

4.
Two classes of X-ray pulsars, the anomalous X-ray pulsars and the soft gamma-ray repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.  相似文献   

5.
We present the broad-band noise structure of selected anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) in the 2–60 keV energy band. We have analysed Rossi X-Ray Timing Explorer Proportional Counter Array archival light curves for four AXPs and one SGR. We detect that the persistent emission of these sources shows band-limited noise at low frequencies in the range 0.005–0.05 Hz varying from 2.5 to 70 per cent integrated rms in times of prolonged quiescence and following outbursts. We discovered band-limited red noise in 1E 2259+586 only for ∼2 yr after its major 2002 outburst. The system shows no broad-band noise otherwise. Although this rise in noise in 1E 2259+586 occurred following an outburst which included a rotational glitch, the other glitching AXPs showed no obvious change in broad-band noise, thus it does not seem that this noise is correlated with glitches. The only source that showed significant variation in broad-band noise was 1E   1048.1−5937  , where the noise gradually rose for 1.95 yr at a rate of ∼3.6 per cent per year. For this source the increases in broad-band noise was not correlated with the large increases in persistent and pulsed flux, or its two short SGR-like bursts. This rise in noise did commence after a long burst, however, given the sparsity of this event, and the possibility that similar bursts went unnoticed the trigger for the rise is noise in 1E   1048.1−5937  is not as clear as for 1E 2259+586. The other three sources indicate a persistent band-limited noise at low levels in comparison.  相似文献   

6.
王娜  吴鑫基 《天文学进展》2000,18(3):229-237
射电脉冲星周期跃变被认为是研究中子星内部结构和状态的极好探针。脉冲星高频巡天发现了一批年青脉冲星,脉冲星周期跃变的观测研究也有了飞快进展。至少发现了25颗有跃变现象的脉冲星(简称跃变脉冲星)和76次跃变事件。PSRJ0835-4510是目前已有跃变脉冲星活动参数最高的,PSRJ1341-62220的跃变活动最频繁,而PSRJ1614-5047在1995年发生的跃变是规模最大的,不同脉冲星的跃变事件  相似文献   

7.
Most of the unidentified gamma ray sources detected near the Galactic plane by EGRET aboard CGRO are expected to be gamma ray pulsars. We present a study about the detectability and identification of some unidentified EGRET sources with the MAGIC telescope. We list some unidentified gamma ray sources from the third EGRET catalogue to be detected with MAGIC taking into account some important conditions such as the variability parameter of the source, spectral index, inclusion in the GeV catalogue (ApJ 488, 1997, p. 872) and possible associations with known X-ray/radio sources located within the error box of the unidentified gamma ray source. We show the required observation time of these gamma ray pulsar candidates to be detected by MAGIC telescope considering reasonable values of cut-off energy. To be more realistic, we have chosen the zenith angle corresponding to the source culmination in the simulation of the effective area A since the observation time is function of the effective area. In addition to this study, it is very important to consider the extrapolated EGRET flux at MAGIC energies above 30 GeV of the gamma ray pulsar candidates taking the MAGIC sensitivity.  相似文献   

8.
We present further considerations regarding the strong 14C variation in AD 774/5. For its cause, either a solar super‐flare or a short gamma‐ray burst were suggested. We show that all kinds of stellar or neutron star flares would be too weak for the observed energy input at Earth in AD 774/5. Even though Maehara et al. (2012) present two super‐flares with ∼1035 erg of presumably solar‐type stars, we would like to caution: These two stars are poorly studied and may well be close binaries, and/or having a M‐type dwarf companion, and/or may be much younger and/or much more magnetic than the Sun – in any such case, they might not be true solar analog stars. From the frequency of large stellar flares averaged over all stellar activity phases (maybe obtained only during grand activity maxima), one can derive (a limit of) the probability for a large solar flare at a random time of normal activity: We find the probability for one flare within 3000 years to be possibly as low as 0.3 to 0.008 considering the full 1σ error range. Given the energy estimate in Miyake et al. (2012) for the AD 774/5 event, it would need to be ∼2000 stronger than the Carrington event as solar super‐flare. If the AD 774/5 event as solar flare would be beamed (to an angle of only ∼24°), 100 times lower energy would be needed. A new AD 774/5 energy estimate by Usoskin et al. (2013) with a different carbon cycle model, yielding 4 ot 6 time lower 14C production, predicts 4–6 times less energy. If both reductions are applied, the AD 774/5 event would need to be only ∼4 times stronger than the Carrington event in 1859 (if both had similar spectra). However, neither 14C nor 10Be peaks were found around AD 1859. Hence, the AD 774/5 event (as solar flare) either was not beamed that strongly, and/or it would have been much more than 4‐6 times stronger than Carrington, and/or the lower energy estimate (Usoskin et al. 2013) is not correct, and/or such solar flares cannot form (enough) 14C and 10Be. The 1956 solar energetic particle event was followed by a small decrease in directly observed cosmic rays. We conclude that large solar super‐flares remain very unlikely as the cause for the 14C increase in AD 774/5. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

10.
The X-ray activity of anomalous X-ray pulsars and soft γ-ray repeaters may result from the heating of their magnetic corona by direct currents dissipated by magnetic reconnection. We investigate the possibility that X-ray flares and bursts observed from anomalous X-ray pulsars and soft γ-ray repeaters result from magnetospheric reconnection events initiated by development of the tearing mode in magnetically dominated relativistic plasma. We formulate equations of resistive force-free electrodynamics, discuss the relation of the latter to ideal electrodynamics, and give examples of both ideal and resistive equilibria. Resistive force-free current layers are unstable towards the development of small-scale current sheets where resistive effects become important. Thin current sheets are found to be unstable due to the development of the resistive force-free tearing mode. The growth rate of the tearing mode is intermediate between the short Alfvén time-scale  τA  and a long resistive time-scale  τR: Γ∼ 1/(τRτA)1/2  , similar to the case of non-relativistic non-force-free plasma. We propose that growth of the tearing mode is related to the typical rise time of flares, ∼10 ms. Finally, we discuss how reconnection may explain other magnetar phenomena and ways to test the model.  相似文献   

11.
Within the magnetar scenario, the 'twisted magnetosphere' model appears very promising in explaining the persistent X-ray emission from soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). In the first two papers of the series, we have presented a 3D Monte Carlo code for solving radiation transport as soft, thermal photons emitted by the star surface are resonantly upscattered by the magnetospheric particles. A spectral model archive has been generated and implemented in xspec . Here, we report on the systematic application of our spectral model to different XMM–Newton and INTEGRAL observations of SGRs and AXPs. We find that the synthetic spectra provide a very good fit to the data for the nearly all the source (and source states) we have analysed.  相似文献   

12.
We examine a possible manifestation of the electromagnetic activity of a magnetized, rotating neutron star in a binary system. Accreting matter from the companion is initially accumulated at the magnetosphere. When the accumulated mass is such that the inflow can start, together with the accretion flare there will be a burst due to the closure of electric currents. The luminosity associated to the latter effect may be as large as 1042 erg/s, if a neutron star possesses the following characteristics: massM =M , period of rotationP = 5 ms, magnetic fieldB 0 = 1012 G, and radiusr 0 = 106 cm. The electromagnetic activity might be relevant for understanding soft gamma ray repeaters.  相似文献   

13.
A total of eight gamma-ray sources are identified with pulsars and these include some of the strongest gamma-ray sources in the sky. About 20 of the unidentified gamma-ray sources are very likely to be associated with currently known pulsars and there is little doubt that many of the others, at least those at low Galactic latitudes, will ultimately be identified with pulsars. How many of these and future gamma-ray detections will be detectable at radio wavelengths depends on the details of the radio and gamma-ray beaming. There is good evidence that the radio beams in young and millisecond pulsars are very wide, implying that most gamma-ray pulsars will be detectable in the radio band.  相似文献   

14.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

15.
We make a statistical analysis of the periodsP and period-derivativesP of pulsars using a model independent theory of pulsar flow in theP-P diagram. Using the available sample ofP andP values, we estimate the current of pulsars flowing unidirectionally along theP-axis, which is related to the pulsar birthrate. Because of radio luminosity selection effects, the observed pulsar sample is biased towards lowP and highP. We allow for this by weighting each pulsar by a suitable scale factor. We obtain the number of pulsars in our galaxy to be 6.05−2.80 +3.32 × 105 and the birthrate to be 0.048−0.011 +0.014 pulsars yr−1 galaxy−1. The quoted errors refer to 95 per cent confidence limits corresponding to fluctuations arising from sampling, but make no allowance for other systematic and random errors which could be substantial. The birthrate estimated here is consistent with the supernova rate. We further conclude that a large majority of pulsars make their first appearance at periods greater than 0.5 s. This ‘injection’, which runs counter to present thinking, is probably connected with the physics of pulsar radio emission. Using a variant of our theory, where we compute the current as a function of pulsar ‘age’ (1/2P/P), we find support for the dipole braking model of pulsar evolution upto 6 × 106 yr of age. We estimate the mean pulsar braking index to be 3.7−0.8 +0.8.  相似文献   

16.
17.
This review describes the observational properties of radio pulsars, fast rotating neutron stars, emitting radio waves. After the introduction we give a list of milestones in pulsar research. The following chapters concentrate on pulsar morphology: the characteristic pulsar parameters such as pulse shape, pulsar spectrum, polarization and time dependence. We give information on the evolution of pulsars with frequency since this has a direct connection with the emission heights, as postulated in the radius to frequency mapping (RFM) concept. We deal successively with the properties of normal (slow) pulsars and of millisecond (fast-recycled) pulsars. The final chapters give the distribution characteristics of the presently catalogued 1300 objects.Received: 5 December 2003, Published online: 15 April 2004 Correspondence to: Richard Wielebinski  相似文献   

18.
We report on a sensitive survey for radio pulsar wind nebulae (PWN) towards 27 energetic and/or high-velocity pulsars. Observations were carried out at 1.4 GHz using the Very Large Array and the Australia Telescope Compact Array and utilized pulsar-gating to search for off-pulse emission. These observing parameters resulted in a considerably more sensitive search than previous surveys and could detect PWN over a much wider range of spatial scales (and hence ambient densities and pulsar velocities). However, no emission clearly corresponding to a PWN was discovered. Based on these non-detections we argue that the young and energetic pulsars in our sample have winds which are typical of young pulsars, but produce unobservable PWN because they reside in low-density ( n ∼0.003 cm−3) regions of the interstellar medium. However, non-detection of PWN around older and less energetic pulsars can only be explained if the radio luminosity of their winds is less than 10−5 of their spin-down luminosity, implying an efficiency at least an order of magnitude smaller than that seen for young pulsars.  相似文献   

19.
The large scale magnetic fields of our Galaxy have been mostly revealed by rotation measures (RMs) of pulsars and extragalactic radio sources. In the disk of our Galaxy, the average field strength over a few kpc scale is about 1.8 μG, while the total field, including the random fields on smaller scales, has a strength of about 5 μG. The local regular field, if it is part of the large scale field of a bisymmetric form, has a pitch angle of about -8°. There are at least three, and perhaps five, field reversals from the Norma arm to the outer skirt of our Galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We collect the data of twin kilohertz quasi‐periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low‐mass X‐ray binary (LMXB) sources, then we analyze the centroid frequency (ν) distribution of twin kHz QPOs (lower frequency ν1 and upper frequency ν2) both for Atoll and Z sources. For the data without shift‐and‐add, we find that Atoll and Z sources show different distributions of ν1, ν2 and ν2/ν1, but the same distribution of Δν (difference of twin kHz QPOs), which indicates that twin kHz QPOs may share the common properties of LXMBs and have the same physical origins. The distribution of Δν is quite different from a constant value, so is ν 2/ν1 from a constant ratio. The weighted mean values and maxima of ν1 and ν2 in Atoll sources are slightly higher than those in Z sources. We also find that shift‐and‐add technique can reconstruct the distributions of ν1 and Δν. The K‐S test results of ν1 and Δν between Atoll and Z sources from data with shift‐and‐add are quite different from those without it, and we think that this may be caused by the selection biases of the sample. We also study the properties of the quality factor (Q) and the root‐meansquared (rms) amplitude of 4U 0614+09 with data from the two observational methods, but the errors are too big to make a robust conclusion. The NS spin frequency (νs) distribution of 28 NS‐LMXBs show a bigger mean value (∼408 Hz) than that (∼281 Hz) of the radio binary millisecond pulsars (MSPs), which may be due to the lack of the spin detections from Z sources (systematically lower than 281 Hz). Furthermore, on the relations between the kHz QPOs and NS spin frequency νs, we find the approximate correlations of the mean values of Δν with NS spin and its half, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号