首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A plane‐shear flow in a fluid with forced turbulence is considered. If the fluid is electrically‐conducting then a mean electromotive force (EMF) results even without basic rotation and the magnetic diffusivity becomes a highly anisotropic tensor. It is checked whether in this case self‐excitation of a large‐scale magnetic field is possible (so‐called × ‐dynamo) and the answer is NO. The calculations reveal the cross‐stream components of the EMF perpendicular to the mean current having the wrong signs, at least for small magnetic Prandtl numbers. After our results numerical simulations with magnetic Prandtl number of about unity have only a restricted meaning as the Prandtl number dependence of the diffusivity tensor is rather strong. If, on the other hand, the turbulence field is strati.ed in the vertical direction then a dynamo‐active α ‐effect is produced. The critical magnetic Reynolds number for such a self‐excitation in a simple shear flow is slightly above 10 like for the other – but much more complicated – flow patterns used in existing dynamo experiments with liquid sodium or gallium. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The ordered magnetic field observed via polarised synchrotron emission in nearby disc galaxies can be explained by a mean‐field dynamo operating in the diffuse interstellar medium (ISM). Additionally, vertical‐flux initial conditions are potentially able to influence this dynamo via the occurrence of the magnetorotational instability (MRI). We aim to study the influence of various initial field configurations on the saturated state of the mean‐field dynamo. This is motivated by the observation that different saturation behaviour was previously obtained for different supernova rates. We perform direct numerical simulations (DNS) of three‐dimensional local boxes of the vertically stratified, turbulent interstellar medium, employing shearing‐periodic boundary conditions horizontally. Unlike in our previous work, we also impose a vertical seed magnetic field. We run the simulations until the growth of the magnetic energy becomes negligible. We furthermore perform simulations of equivalent 1D dynamo models, with an algebraic quenching mechanism for the dynamo coefficients. We compare the saturation of the magnetic field in the DNS with the algebraic quenching of a mean‐field dynamo. The final magnetic field strength found in the direct simulation is in excellent agreement with a quenched α) dynamo. For supernova rates representative of the Milky Way, field losses via a Galactic wind are likely responsible for saturation. We conclude that the relative strength of the turbulent and regular magnetic fields in spiral galaxies may depend on the galaxy's star formation rate. We propose that a mean field approach with algebraic quenching may serve as a simple sub‐grid scale model for galaxy evolution simulations including a prescribed feedback from magnetic fields. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Mechanisms of nonhelical large‐scale dynamos (shear‐current dynamo and effect of homogeneous kinetic helicity fluctuations with zero mean) in a homogeneous turbulence with large‐scale shear are discussed. We have found that the shearcurrent dynamo can act even in random flows with small Reynolds numbers. However, in this case mean‐field dynamo requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number, Pmcr = 0.24, is determined using second order correlation approximation (or first‐order smoothing approximation) for a background random flow with a scale‐dependent viscous correlation time τc = (νk 2)–1 (where ν is the kinematic viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear‐current dynamo occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating large‐scale magnetic fields in a broad class of astrophysical turbulent systems with large‐scale shear. On the other hand, mean‐field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that contains, e.g., low‐frequency oscillations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos with α linearly depending on position, which makes this dynamo oscillatory, too. In both cases, the critical values of the dynamo number is lowered due to spatio‐temporal nonlocality.When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos  相似文献   

5.
Observations in polarized emission reveal the existence of large‐scale coherent magnetic fields in a wide range of spiral galaxies. Radio‐polarization data show that these fields are strongly inclined towards the radial direction, with pitch angles up to 35° and thus cannot be explained by differential rotation alone. Global dynamo models describe the generation of the radial magnetic field from the underlying turbulence via the so called α ‐effect. However, these global models still rely on crude assumptions about the small‐scale turbulence. To overcome these restrictions we perform fully dynamical MHD simulations of interstellar turbulence driven by supernova explosions. From our simulations we extract profiles of the contributing diagonal elements of the dynamo α ‐tensor as functions of galactic height. We also measure the coefficients describing vertical pumping and find that the ratio between these two effects has been overestimated in earlier analytical work, where dynamo action seemed impossible. In contradiction to these models based on isolated remnants we always find the pumping to be directed inward. In addition we observe that depends on whether clustering in terms of superbubbles is taken into account. Finally, we apply a test field method to derive a quantitative measure of the turbulent magnetic diffusivity which we determine to be ∼2 kpckms–1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Guided by the recent observational result that the meridional circulation of the Sun becomes weaker at the time of the sunspot maximum, we have included a parametric quenching of the meridional circulation in solar dynamo models such that the meridional circulation becomes weaker when the magnetic field at the base of the convection zone is stronger. We find that a flux transport solar dynamo tends to become unstable on including this quenching of meridional circulation if the diffusivity in the convection zone is less than about 2×1011 cm2 s−1. The quenching of α, however, has a stabilizing effect and it is possible to stabilize a dynamo with low diffusivity with sufficiently strong α-quenching. For dynamo models with high diffusivity, the quenching of meridional circulation does not produce a large effect and the dynamo remains stable. We present a solar-like solution from a dynamo model with diffusivity 2.8×1012 cm2 s−1 in which the quenching of meridional circulation makes the meridional circulation vary periodically with solar cycle as observed and does not have any other significant effect on the dynamo.  相似文献   

7.
In light of new results, the one‐dimensional mean‐field dynamo model of Brandenburg & Käpylä (2007) with dynamical quenching and a nonlocal Babcock‐Leighton α effect is re‐examined for the solar dynamo. We extend the one‐dimensional model to include the effects of turbulent downward pumping (Kitchatinov & Olemskoy 2011), and to combine dynamical quenching with shear. We use both the conventional dynamical quenching model of Kleeorin & Ruzmaikin (1982) and the alternate one of Hubbard & Brandenburg (2011), and confirm that with varying levels of non‐locality in the α effect, and possibly shear as well, the saturation field strength can be independent of the magnetic Reynolds number. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In order to extend the abilities of the αΩ dynamo model to explain the observed regularities and anomalies of the solar magnetic activity, the negative buoyancy phenomenon and the magnetic quenching of the α effect were included in the model, as well as newest helioseismically determined inner rotation of the Sun were used. Magnetic buoyancy constrains the magnitude of toroidal field produced by the Ω effect near the bottom of the solar convection zone (SCZ). Therefore, we examined two “antibuoyancy” effects: i) macroscopic turbulent diamagnetism and ii) magnetic advection caused by vertical inhomogeneity of fluid density in the SCZ, which we call the ∇ρ effect. The Sun's rotation substantially modifies the ∇ρ effect. The reconstruction of the toroidal field was examined assuming the balance between mean‐field magnetic buoyancy, turbulent diamagnetism and the rotationally modified ∇ρ effect. It is shown that at high latitudes antibuoyancy effects block the magnetic fields in the deep layers of the SCZ, and so the most likely these deep‐rooted fields could not become apparent at the surface as sunspots. In the near‐equatorial region, however, the upward ∇ρ effect can facilitate magnetic fields of about 3000 – 4000 G to emerge through the surface at the sunspot belt. Allowance for the radial inhomogeneity of turbulent velocity in derivations of the helicity parameter resulted in a change of sign of the α effect from positive to negative in the northern hemisphere near the bottom of the SCZ. The change of sign is very important for direction of the Parker's dynamo‐waves propagation and for parity of excited magnetic fields. The period of the dynamo‐wave calculated with allowance for the magnetic quenching is about seven years, that agrees by order of magnitude with the observed mean duration of the sunspot cycles. Using the modern helioseismology data to define dynamo‐parameters, we conclude that north‐south asymmetry should exist in the meridional field. At low latitudes in deep layers of the SCZ, the αΩ dynamo excites most efficiency the dipolar mode of the meridional field. Meanwhile, in high‐latitude regions a quadrupolar mode dominates in the meridional field. The obtained configuration of the net meridional field is likely to explain the magnetic anomaly of polar fields (the apparent magnetic “monopole”) observed near the maxima of solar cycles. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The generation of magnetic field in a homogeneous, electrically conducting fluid – as required for the dynamo generation of the fields of many astrophysical bodies – is normally a threshold process; the dynamo mechanism, applicable to such bodies in unmagnetised environments, requires motions of sufficient strength to overcome the innate magnetic diffusion. In the presence of an ambient field, however, the critical nature of the field generation process is relaxed. Motions can distort and amplify the ambient field for all amplitudes of flow. For motions with appropriate geometries, an internal ‘dynamo‐like’ field of appreciable strength can be generated, even for relatively weak flows. At least a minority of planets, moons and other bodies exist within significant external astrophysical fields. For these bodies, the ambient field problem is more relevant than the classical dynamo problem, yet it remains relatively little studied. In this paper we consider the effect of an axial ambient field on a spherical mean‐field α 2ω dynamo model, through nonlinear calculations with α ‐quenching feedback. Ambient fields of varying strengths, and both stationary and oscillatory in time, are imposed. Particular focus is placed on the effects of these fields on the equatorial symmetry and the time dependence of the preferred solutions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Several one and two dimensional mean field models are analyzed where the effects of current helicity fluxes and boundaries are included within the framework of the dynamical quenching model. In contrast to the case with periodic boundary conditions, the final saturation energy of the mean field decreases inversely proportional to the magnetic Reynolds number. If a nondimensional scaling factor in the current helicity flux exceeds a certain critical value, the dynamo can operate even without kinetic helicity, i.e. it is based only on shear and current helicity fluxes, as first suggested by Vishniac & Cho (2001, ApJ 550, 752). Only above this threshold is the current helicity flux also able to alleviate catastrophic quenching. The fact that certain turbulence simulations have now shown apparently non‐resistively limited mean field saturation amplitudes may be suggestive of the current helicity flux having exceeded this critical value. Even below this critical value the field still reaches appreciable strength at the end of the kinematic phase, which is in qualitative agreement with dynamos in periodic domains. However, for large magnetic Reynolds numbers the field undergoes subsequent variations on a resistive time scale when, for long periods, the field can be extremely weak. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The components of the total stress tensor (Reynolds stress plus Maxwell stress) are computed within the quasilinear approximation for a driven turbulence influenced by a large‐scale magnetic background field. The conducting fluid has an arbitrary magnetic Prandtl number and the turbulence without the background field is assumed as homogeneous and isotropic with a free Strouhal number St. The total large‐scale magnetic tension is always reduced by the turbulence with the possibility of a ‘catastrophic quenching’ for large magnetic Reynolds number Rm so that even its sign is reversed. The total magnetic pressure is enhanced by turbulence in the high‐conductivity limit but it is reduced in the low‐conductivity limit. Also in this case the sign of the total pressure may reverse but only for special turbulences with sufficiently large St > 1. The turbulence‐induced terms of the stress tensor are suppressed by strong magnetic fields. For the tension term this quenching grows with the square of the Hartmann number of the magnetic field. For microscopic (i.e. small) diffusivity values the magnetic tension term becomes thus highly quenched even for field amplitudes much smaller than their equipartition value. In the opposite case of large‐eddy simulations the magnetic quenching is only mild but then also the turbulence‐induced Maxwell tensor components for weak fields remain rather small (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of nonlinear transition to turbulence in non‐rotating wall‐bounded shear flows. To illustrate this idea, we describe some recent results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and should be applicable to many astrophysical problems involving a shear flow and non‐axisymmetric instabilities of shearinduced axisymmetric toroidal velocity or magnetic fields, such as Kelvin‐Helmholtz, magnetorotational, Tayler or global magnetoshear instabilities. In the light of several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHD dynamo processes in high‐Reynolds number shear flows could act as a large‐scale driving mechanism of turbulent flows that would in turn generate an independent small‐scale dynamo. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Global dynamo simulations solving the equations of magnetohydrodynamics (MHD) have been a tool of astrophysicists who try to understand the magnetism of the Sun for several decades now. During recent years many fundamental issues in dynamo theory have been studied in detail by means of local numerical simulations that simplify the problem and allow the study of physical effects in isolation. Global simulations, however, continue to suffer from the age‐old problem of too low spatial resolution, leading to much lower Reynolds numbers and scale separation than in the Sun. Reproducing the internal rotation of the Sun, which plays a crucial role in the dynamo process, has also turned out to be a very difficult problem. In the present paper the current status of global dynamo simulations of the Sun is reviewed. Emphasis is put on efforts to understand how the large‐scale magnetic fields, i.e. whose length scale is greater than the scale of turbulence, are generated in the Sun. Some lessons from mean‐field theory and local simulations are reviewed and their possible implications to the global models are discussed. Possible remedies to some current issues of solar simulations are put forward (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Turbulent plane‐shear flow is found to show same basic effects of mean‐fieldMHD as rotating turbulence. In particular, the mean electromotive force (EMF) includes highly anisotropic turbulent diffusion and alpha‐effect. Only magnetic diffusion remains for spatially‐uniform turbulence. The question is addressed whether in this case a self‐excitation of a magnetic field by so‐called sher‐current dynamo is possible and the quasilinear theory provides a negative answer. The streamaligned component of the EMF has the sign opposite to that required for dynamo. If, however, the turbulence is not uniform across the flow direction then a dynamo‐active α ‐effect emerges. The critical magnetic Reynolds number for the alpha‐shear dynamo is estimated to be slightly above ten. Possibilities for cross‐checking theoretical predictions with MHD experiments are discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A nonlinear dynamo model that allows for the dependence of the turbulent diffusivity on the magnetic field shows the phenomenon of a hysteresis. In a certain range of dynamo numbers, two types of solutions are possible: decaying oscillations of weak fields and magnetic cycles with a constant and large amplitude, which are settled depending on the initial conditions. Fluctuations in α-parameter cause transitions between these two regimes and calculations show the intermittency of magnetic cycles with a relatively large amplitude and epochs of weak magnetic fields. This behavior can serve as a model of grand minima of solar activity like the well-known Maunder minimum.  相似文献   

17.
We summarize new and continuing three-dimensional spherical shell simulations of dynamo action by convection allowed to penetrate downward into a tachocline of rotational shear. The inclusion of an imposed tachocline allows us to examine several processes believed to be essential in the operation of the global solar dynamo, including differential rotation, magnetic pumping, and the stretching and organization of fields within the tachocline. In the stably stratified core, our simulations reveal that strong axisymmetric magnetic fields (of ∼ 3000 G strength) can be built, and that those fields generally exhibit a striking antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. In the convection zone above, fluctuating fields dominate over weaker mean fields. New calculations indicate that the tendency toward toroidal fields of antisymmetric parity is relatively insensitive to initial magnetic field configurations; they also reveal that on decade-long timescales, the magnetic fields can briefly enter (and subsequently emerge from) states of symmetric parity.We have not yet observed any overall reversals of the field polarity, nor systematic latitudinal propagation. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The axisymmetric component of the large-scale solar magnetic fields has a pronounced poleward branch at higher latitudes. In order to clarify the origin of this branch we construct an axisymmetric model of the passive transport of the mean poloidal magnetic field in the convective zone, including meridional circulation, anisotropic diffusivity, turbulent pumping and density pumping. For realistic values of the transport coefficients we find that diffusivity is prevalent, and the latitudinal distribution of the field at the surface simply reflects the conditions at the bottom of the convective zone. Pumping effects concentrate the field to the bottom of the convective zone; a significant part of this pumping occurs in a shallow subsurface layer, normally not resolved in dynamo models. The phase delay of the surface poloidal field relative to the bottom poloidal field is found to be small. These results support the double dynamo wave models, may be compatible with some form of a mixed transport scenario, and exclude the passive transport theory for the origin of the polar branch.  相似文献   

19.
As was demonstrated in earlier studies, turbulence can result in a negative contribution to the effective mean magnetic pressure, which, in turn, can cause a large‐scale instability. In this study, hydromagnetic mean‐field modelling is performed for an isothermally stratified layer in the presence of a horizontal magnetic field. The negative effective magnetic pressure instability (NEMPI) is comprehensively investigated. It is shown that, if the effect of turbulence on the mean magnetic tension force vanishes, which is consistent with results from direct numerical simulations of forced turbulence, the fastest growing eigenmodes of NEMPI are two‐dimensional. The growth rate is found to depend on a parameter β* characterizing the turbulent contribution of the effective mean magnetic pressure for moderately strong mean magnetic fields. A fit formula is proposed that gives the growth rate as a function of turbulent kinematic viscosity, turbulent magnetic diffusivity, the density scale height, and the parameter β*. The strength of the imposed magnetic field does not explicitly enter provided the location of the vertical boundaries are chosen such that the maximum of the eigenmode of NEMPI fits into the domain. The formation of sunspots and solar active regions is discussed as possible applications of NEMPI (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Following a brief overview of the two main approaches to investigate the interaction between magnetic fields and convective flows near the solar surface layers by numerical simulation, namely idealized model problems and ‘realistic’ large‐eddy simulations, we present first results obtained with a newly developed MHD code. The first example concerns the realistic simulation of the magnetic field dynamics in a solar plage region while the second example demonstrates small‐scale dynamo action in idealized compressible convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号