首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The site response at 15 stations in the Adana-Ceyhan region (Southern Turkey) is calculated from the recordings of aftershocks of June 27, 1998 Adana-Ceyhan earthquake (MS=6.2) by using the Standard Spectral Ratio (SSR) and the Horizontal-to-Vertical Spectral Ratio (HVSR) methods. While the two methods are in good harmony at a few stations in determining the site effects, they show differences on the estimated amplifications or on the site resonance frequencies at most stations. It was not clear which one of the two methods underestimates or overestimates the amplification values. We observe that at some stations, where the local site conditions are rather complex, the vertical component records are strongly influenced from the local soil conditions. Thus, the HVSR method fails at these stations. The SSR method underestimates the amplifications at some stations since the rock site, selected as reference site, has its own site response and/or the path correction we applied, considering the geometrical spreading factor only, is insufficient. At the sites where high intensity values were observed, we found high amplifications. The fundamental soil frequencies characterize the damage properties observed in the Adana-Ceyhan earthquake. The fundamental soil frequency is nearly at 1.1 Hz at the Ceyhan site, where severe damage was observed in the 5–6 story buildings, while the fundamental soil frequency is between 3–6 Hz at the Adana site, where damage was in the low-story buildings. Therefore, in addition to inefficient construction practices, it is clear that the resonance effects have also contributed to the observed damage.  相似文献   

2.
The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F p and the average site amplification in different frequency bands of 1.0–5.0 Hz, 5.0–10.0 Hz and 1.0–10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V s20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance D Aspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold of PGA > 300 cm/s2 or PGV > 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.  相似文献   

3.
Deamplification of strong motion and the increase of the effective period of soil deposits are typical nonlinear effects; we seek them in SMART1-array data by applying the horizontal-to-vertical spectral ratio (HVSR) technique. The recordings, from four soil and one rock stations, represent 23 earthquakes (ML 4.9–7.0); PGA varies between 20–260 cm/s2. For each station, mean HVSR curves are calculated for two PGA ranges: <75 cm/s2 and >100 cm/s2 (weak and strong motion). At the soil stations, the “weak” (linear) and “strong” (nonlinear) responses are significantly different. Below 1–1.8 Hz, the nonlinear response exceeds the linear one. Above 2 Hz, the nonlinear response drops below the linear one and above 4–6 Hz below unity (deamplification). From 10 to 16 Hz, the two responses converge. One soil site shows significant negative correlation between resonance frequency and ground acceleration. Such behaviour agrees with other empirical studies and theoretical predictions. Our results imply that the HVSR technique is sensitive to ground-motion intensity and can be used to detect and study nonlinear site response.  相似文献   

4.
In San Gregorio (L’Aquila, Italy) a three-story, reinforced concrete (RC) building had the first floor collapsed following the earthquake of April 6, 2009. The remaining two stories fell with a displacement in the horizontal projection of about 70 cm. This unusual behaviour is made more puzzling by the fact that buildings located at a short distance and with similar features had little or no damage reported. To understand the causes of the collapse we performed strong motion recordings, microtremor measurements, a detailed geological survey, a high-resolution geo-electrical tomography, a borehole with a down-hole test. On the building we performed a geometrical survey and laboratory tests on concrete cores. The acceleration and noise recordings have shown a high amplification with uphill-downhill direction. The geological survey has revealed the presence of co-seismic fractures on stiff soils. Geo-electrical tomography has shown an unexpected, strong discontinuity just below the building. Taking advantage of excavations in adjacent lots, we have highlighted rare cataclastic decimetric bands with a very low resistance material incorporated in well-stratified calcarenites. The same soft material has been founded in the borehole down to 17 m from ground level, showing a shear wave velocity that starts at 250 m/s, increases with depth and has an abrupt transition in calcarenites at 1,150 m/s. The surface geophysical measurements in the vicinity of the site have not shown similar situations, with flat HVSR curves as expected for a rock outcrop, except for a lateral extension of the soft zone. The analysis on the quality of the building materials has yielded values higher than average for the age and type of construction, and no special design or construction deficiencies have been observed. A strong, peculiar site effect thus appears to be the most likely cause of the damage observed.  相似文献   

5.
The method of coda waves was applied to two different sets of data for the evaluation of the relative site response.The first set of data consists of low magnitude earthquakes with closely spaced locations, recorded at a small aperture array of velocimeters located in the Abruzzo region, central Italy. The second set of data is composed of events with epicentral distance ranging from 20 to 300 km, recorded at a seismological network with an aperture of about 100 km located in the Puglia region, southern Italy.Results show that the coda wave method furnishes stable estimates of the site effect. An amplification, relative to an arbitrary site, of a factor of about 2 occurs in the 1.7–6 Hz frequency band for two stations of the Abruzzo network, while an amplification factor of about 0.5 occurs in the whole frequency band (1–24 Hz) for one of the stations of the Puglia network. This station is located in an area which is correlated with a low macroseismic intensity anomaly.  相似文献   

6.
Twenty six sites were instrumented in the city of Vartholomio following the December 2, 2002 Ms 6.0 earthquake. Thirty weak events from the aftershock sequence as well as microtremors were used to identify amplifications due to geological site effects. Horizontal-to-vertical spectral ratios (HVSR—Nakamura estimates) and weak events ratios were calculated and the singular spectrum analysis (SSA) method was used. The results showed that the effects of SSA on the stability of the frequency peak and amplitude distribution of HVSR for both weak motion and microtremors. The data analysis confirms the role of near surface geology in causing locally significant variations of the predominant frequencies and amplitudes of ground shaking as already inferred from the distribution of damages. The site response spectra exhibited significant peaks within the range of 1.5–2.6 Hz and the amplification factor did not exceed 6.5. Finally the parts of the HVSR ratios from ~0.2 up to 10 Hz were used, in order to create an automatic optimal zonation of the study area using a genetic algorithm. This procedure resulted in the division of the city into 2 main zones.  相似文献   

7.
Recordings of micro- and moderate-size local earthquakes have been used to quantify site effects in the central-west Turkey which contains one of the world’s best examples of a rapid intra-continental extension with its high population and industrial potential. We analyzed 436 earthquakes with local magnitudes ranging between 2.0 and 5.6 using three component digital recordings from 32 stations. Site functions were obtained using two different spectral ratio approaches (horizontal to vertical spectral ratio, HVSR, and standard spectral ratio, SSR). HVSR estimates of transverse and radial S-waves were compared with one another. Epicentral distance, magnitude and back-azimuth dependencies of site functions were also evaluated. In general, HVSR values from transverse and radial S-waves are similar within a factor of 2. The back-azimuth dependencies of transverse S-wave HVSR results are more significant than distance and magnitude dependencies. On the other hand, averaging of transverse and radial S-wave HVSR results eliminates systematic back-azimuth dependencies caused by source radiation effects. Distributions of HVSR estimates along ~N–S linear array, which traversed main grabens in the region with a station spacing of 3–4 km, reflect subsurface geological complexities in the region. The sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment–bedrock interface near the basin edges. The results also show that, even if the site is located on a horst, the presence of weathered zones along the surface could cause moderate frequency dependent site effects. Comparison of HVSR and SSR estimates for the stations on the graben sites showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects.  相似文献   

8.
In order to deeply understand the characteristics of influence factors of ground motion in Southwest Yunnan, and better serve the related research of seismic fortification and earthquake prediction in the target area, 242 groups of three-component strong earthquake recordings in Southwest Yunnan from 2007 to 2019 were analyzed by using the two-step non-parametric generalized inversion method. By separating and solving the ground motions observed on the surface in frequency domain, the empirical relationship of the quality factors of 0.5 ~ 20 Hz in this area was given, and the site effect of 26 strong earthquake stations in the study frequency band were obtained, which were compared with the HVSR results. Based on the grid search method, the seismic moment M0, corner frequency fc and source model parameters of 35 seismic events are determined, and the calibration relationship among some source parameters is obtained by fitting. The results show that the relationship between Q value and frequency of quality factor in Southwest Yunnan is Q=94.23f 0.43. Compared with HVSR method, the site response determined by non-parametric generalized inversion method is generally higher, but the site effect spectra obtained by the two methods are consistent. The source parameters such as corner frequency, seismic moment and stress drop are mutually dependent.  相似文献   

9.
This paper proposes a HVSR (horizontal to vertical spectral ratio)-based approach to assess a deep and dynamically compacted fill area in Western Sydney. In addition to recognizing that the predominant resonance peak of the HVSR curve is a reflection of the impedance contrast between the surface layers and bedrock, the present paper recognizes that the secondary resonance peaks of the curve at higher frequencies may reflect strong impedance contrast within surface layers. This concept has been applied to develop a methodology of HVSR-based approach relying on the measurement of the HVSR of microtremors at measuring stations, and calibration and verification by independent mechanical and MSOR (multichannel simulation with one receiver) tests. The use of MSOR tests is introduced in this paper to facilitate the calibration of the HVSR forward model, particularly in terms of providing information for the initial guess of the shear wave velocity, Vs, profile in the HVSR forward modelling. The present paper demonstrates the effective use of the HVSR-based approach to assess dynamic compaction in the gaps away from and not covered by the mechanical tests. The mapping between the depth of bedrock and the predominant resonance frequency is also extended to include the mapping of the depths of layers with strong impedance contrasts to the secondary resonance peaks, after the data have been verified by independent mechanical tests.  相似文献   

10.
基于强震观测记录,采用广义反演法和HVSR法分析日本仙台盆地48个强震台站以及场地vS30和盆地深度对放大效应的影响。研究表明,相比于广义反演法,HVSR法能够较好地给出场地主频,但会明显低估放大效应的幅值;处于盆地外不同位置的浅源地震引起的盆地放大效应差异明显,仙台盆地南部海域地震引起的放大效应最大,盆地北部陆地地震引起的放大效应最小;盆地南部和东部地震引起的S波的放大效应与vS30的相关性较强,北部地震的放大效应与vS30基本不相关;盆地S波的放大效应与盆地深度在0.5~5 Hz频段内的相关性较强,在0.25~0.5 Hz和5~10 Hz频段内基本不相关。  相似文献   

11.
We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2–5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600–750 m/s and a thickness of 100–200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.  相似文献   

12.
The city of Ljubljana is located in one of the three areas with the highest seismic hazard in Slovenia, and it is also the most densely populated. Site effects due to Quaternary sediments, which fill the up to 200 m-deep basin, are characteristic of the whole city area, but they can be especially strong in the southern part of Ljubljana, which is built on very soft lacustrine deposits. Existing microzonation studies of the city are inadequate, since there is a lack of borehole, geophysical and earthquake data. The microtremor horizontal-to-vertical spectral ratio (HVSR) method was therefore applied to a 200 m dense grid of free-field measurements over an area of 45 km2 (1,223 measuring points) in order to assess the fundamental frequency of the sediments. The main difficulties in microtremor measurement arose from high levels of traffic and industrial noise, and from underground structures. Experimental conditions which can influence data quality, such as strong wind and water saturation of soil, were analysed. Very clear HVSR peaks were obtained in the entire southern part of the city, whereas in the northern part the site response is in general lower due to lower impedance contrast of gravel with the bedrock. The iso-frequency map of sediments shows a distribution in the range of 0.9–10 Hz. In the southern part of Ljubljana, sediment frequency correlates well with the thickness of soft sediments known from geophysical investigations and sparse drilling. Average amplitude of the HVSR peaks is considerably higher in the southern part (6.7 ± 2.4) than in the northern part (4.0 ± 2.0) of the city, indicating a high impedance contrast of lacustrine sediments with the bedrock. Microtremor measurements were also performed inside 122 buildings of various heights. We focused on important public buildings and selected blocks of flats and houses. To assess the longitudinal and transverse fundamental frequencies of each building, amplitude spectra and the spectral ratio between the upper floor and the basement were analysed for both directions. When one of these frequencies is close to a nearby free-field fundamental frequency, a potential soil-structure resonance is present. This was found in 12 of the measured buildings. Three of them are tall residential buildings (from 10 to 15 floors) with a fundamental frequency of 2–3 Hz, and nine of them are low-rise buildings (from 3 to 5 floors) with a fundamental frequency ranging from 3 to 4.5 Hz. Using the relationship between fundamental frequency and height, the typical height of buildings that might cause soil-structure resonance can be estimated at a given sediment frequency obtained from free-field measurements.  相似文献   

13.
Local site conditions play an important role in the effective application of strong motion recordings.In the China National Strong Motion Observation Network System(NSMONS),some of the stations do not provide borehole information,and correspondingly,do not assign the site classes yet.In this paper,site classification methodologies for free-field strong motion stations are reviewed and the limitations and uncertainties of the horizontal-to-vertical spectral ratio(HVSR) methods are discussed.Then,a new method for site classification based on the entropy weight theory is proposed.The proposed method avoids the head or tail joggle phenomenon by providing the objective and subjective weights.The method was applied to aftershock recordings from the 2008 Wenchuan earthquake,and 54 free-field NSMONS stations were selected for site classification and the mean HVSRs were calculated.The results show that the improved HVSR method proposed in this paper has a higher success rate and could be adopted in NSMONS.  相似文献   

14.
通过布置于龙门山断裂带中段、龙门山山前玉皇观区域的地震观测台站阵列接收地震数据,研究该区域的地震动放大效应和地下地质结构.观测阵列共10台宽频带地震仪,分布在玉皇观河口冲积扇区域.分别采用参考场址谱比法(RSSR)和HV谱比法(HVSR)计算64个高信噪比近震数据的振幅谱比函数,结果显示在玉皇观区域具有较明显的地震动放大效应,并且局部场址效应显著.以S06场址为例,建立近地表地震地质模型,通过SH波放大效应正演模拟研究该场址的地震动放大模式.RSSR与HVSR的结果表明,两者所计算的场址放大效应主频一致,但是HVSR的放大峰值却比RSSR的放大峰值大一倍左右,表明HVSR的结果可能包含了波场在近地表低速层之下传播路径的改造作用.另外,采用27个远震P波的接收函数计算了该区域地壳上地幔S波速度结构.接收函数研究结果显示玉皇观地区的莫霍面深度为44 km,沉积盖层、结晶地壳和上地幔的S波速度分别为2.5 km·s~(-1)、3.5 km·s~(-1)和4.5 km·s~(-1).观测阵列台站之间的接收函数反演结果一致性较好,说明本研究区域范围内地形地貌等近地表结构因素的相对变化对接收函数的影响不大.  相似文献   

15.
近地表结构和构造探测是研究活动断层近地表特征和工程场地地震效应的关键环节.对于城市地区,丰富的噪声限制了常规地球物理勘探方法的应用,最近的研究表明,利用噪声也可用来反演近地表结构.我们在河北保定地区,布设了一条由二百多个观测点组成的密集地震噪声剖面,探索利用噪声探测近地表结构的可能性.用噪声水平和垂直向谱比法(HVSR...  相似文献   

16.
Three studies of site amplification factors, based on the recorded aftershocks, and one study based on strong motion data, are compared one with another and with the observed distribution of damage from the Northridge, CA, earthquake of 17 January 1994 (ML=6.4). In the epicentral area, when the peak ground velocities are larger than vm≈15 cm/s, nonlinear response of soil begins to distort the amplification factors determined from small amplitude (linear) wave motion. Moving into the area of near-field and strong ground motion (vm>30 cm/s), the site response becomes progressively more affected by the nonlinear soil response. Based on the published results, it is concluded that site amplification factors determined from small amplitude waves (aftershocks, small earthquakes, coda waves) and their transfer-function representation may be useful for small and distant earthquake motions, where soils and structures respond to earthquake waves in a linear manner. However in San Fernando Valley, during the Northridge earthquake, the observed distribution of damage did not correlate with site amplification determined from spectra of recorded weak motions. Mapping geographical distribution of site amplification using other than very strong motion data, therefore appears to be of little use for seismic hazard analyses.  相似文献   

17.
—?Site response was estimated at 19 sites in the Anchorage basin in south-central Alaska, using 15 local earthquakes recorded with good signal-to-noise ratio by a temporary weak motion network. The receiver-function-type horizontal-to-vertical spectral ratios (HVSR) were computed at 1–9 Hz frequency band and the resulting HVSR contour maps at 1, 5 and 9 Hz are presented here. The spatial site response distribution shows considerable variation from the foothills of the Chugach Mountains in the east to the western part of Anchorage. The site response increases by a factor of 3 and 3.5 at 1 and 5 Hz, respectively, from the area of older glacial deposits in the eastern part of the city to the area occupied by the Bootlegger Cove formation, particularly in the section adjoining Knik Arm. At 9 Hz, the variation of HVSR from the east to the west is smaller, approximately by a factor of 2. Moreover, the trend of the HVSR variation at 1 and 5 Hz shows good correlation with that of the soil class obtained from surface measurements of S-wave velocity in the 0–30?m depth range and available results on ground failure susceptibility of Anchorage.  相似文献   

18.
This paper describes the analyses of the single-station ambient-vibration measurements performed on the Italian accelerometric network to detect site resonance phenomena potentially affecting earthquake recordings. The use of low cost, high quality microtremor measurement can be helpful to discriminate among soil classes, since several classification schemes based on resonance frequencies were proposed in the last decades. Operatively, in the framework of the Italian Strong Motion Database project (DPC-INGV 2007–2009 S4; ), soil resonance frequencies have been evaluated from more than 200 ambient vibration measurements in correspondence of accelerometric stations included in ITACA (). The noise recordings have been analyzed using the same numerical protocol in order to standardize the results. Particular attention has been paid to evaluate the quality of measurements and to develop an on-purpose mathematical tool to automatically estimate the peaks in the horizontal-to-vertical spectral ratio (HVSR) curve. The reliability of the resonance frequencies from HVSR has been tested by comparing estimates provided by independent methods (modeling or earthquake recordings). The test confirmed the reliability of the microtremor HVSR for assessing the resonance frequencies of the examined sites.  相似文献   

19.
The Algiers–Boumerdes region has been struck by a destructive magnitude 6.8 (Mw) earthquake on May 21, 2003. The study presented in this paper is based on main shock strong motions from 13 stations of the Algerian accelerograph network. A maximum 0.58g peak ground acceleration (PGA) has been recorded at 20 km from the epicenter, only about 150 m away from a PGA of 0.34g, with both a central frequency around 5 Hz, explained by a strong very localized site effect, confirmed by receiver function technique results showing peaks at 5 Hz with amplitudes changing by a factor of 2. Soil amplifications are also evidenced at stations located in the quaternary Mitidja basin, explaining the higher PGA values recorded at these stations than at stations located on firm soil at similar distances from the epicenter. A fault-related directionality effect observed on the strong motion records and confirmed by the study of the seismic movement anisotropy, in agreement with the N65 fault plan direction, explains the SW–NE orientation of the main damage zone. In the near field, strong motions present a high-frequency content starting at 3 Hz with a central frequency around 8 Hz, while in the far field their central frequency is around 3 Hz, explaining the high level of damage in the 3- to 4-story buildings in the epicentral zone. The design spectra overestimate the recorded mean response spectra, and its high corner frequency is less than the recorded one, leading to a re-examination of the seismic design code that should definitively integrate site-related coefficient, to account for the up to now neglected site amplification, as well as a re-modeling of the actual design spectra. Finally, both the proposed Algerian attenuation law and the worldwide laws usually used in Algeria underestimate the recorded accelerations of the 6.8 (Mw) Boumerdes earthquake, clearly showing that it is not possible to extrapolate the proposed Algerian law to major earthquakes.  相似文献   

20.
基于台阵记录的土层山体场地效应分析   总被引:1,自引:1,他引:0       下载免费PDF全文
卢育霞  刘琨  王良  魏来  李少华 《地震学报》2017,39(6):941-954
选取2008年5月25日至8月7日期间由甘肃省文县上城山地形效应台阵获取的12次汶川地震余震事件(MS≥4.0),在分析其地震动基本参数的基础上,采用参考场地谱比(RSSR)法和水平-竖向谱比(HVSR)法,研究了不同地震作用下上城山地形台阵的场地效应.分析结果显示:随着高程和覆盖层的增加,记录台站地震动的PGA呈增大趋势,地震频谱形状由宽变窄;上城山台阵记录到的地震波在地形基阶频段(2—4 Hz)和浅部土层频段(7—9 Hz)的幅值明显放大,RSSR曲线显示山顶NS向的土层频段谱比大于山体地形频段谱比;由于土层山体竖向地震动在中高频段放大,使得HVSR方法谱比结果在中高频段较RSSR方法所得结果明显偏低,而在山体基阶频段附近两种方法的谱比值接近.松散土层山体的台阵记录特征体现了地形和土层对地震动的联合作用,揭示了强震区起伏地形场地震害加重及地震滑坡集中发生的原因所在.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号