首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Remote sensing techniques allow monitoring the Earth surface and acquiring worthwhile information that can be used efficiently in agro-hydrological systems. Satellite images associated to computational models represent reliable resources to estimate actual evapotranspiration fluxes, ETa, based on surface energy balance. The knowledge of ETa and its spatial distribution is crucial for a broad range of applications at different scales, from fields to large irrigation districts. In single plots and/or in irrigation districts, linking water volumes delivered to the plots with the estimations of remote sensed ETa can have a great potential to develop new cost-effective indicators of irrigation performance, as well as to increase water use efficiency. With the aim to assess the irrigation system performance and the opportunities to save irrigation water resources at the “SAT Llano Verde” district in Albacete, Castilla-La Mancha (Spain), the Surface Energy Balance Algorithm for Land (SEBAL) was applied on cloud-free Landsat 5 Thematic Mapper (TM) images, processed by cubic convolution resampling method, for three irrigation seasons (May to September 2006, 2007 and 2008). The model allowed quantifying instantaneous, daily, monthly and seasonal ETa over the irrigation district. The comparison between monthly irrigation volumes distributed by each hydrant and the corresponding spatially averaged ETa, obtained by assuming an overall efficiency of irrigation network equal to 85%, allowed the assessment of the irrigation system performance for the area served by each hydrant, as well as for the whole irrigation district. It was observed that in all the investigated years, irrigation volumes applied monthly by farmers resulted generally higher than the corresponding evapotranspiration fluxes retrieved by SEBAL, with the exception of May, in which abundant rainfall occurred. When considering the entire irrigation seasons, it was demonstrated that a considerable amount of water could have been saved in the district, respectively equal to 26.2, 28.0 and 16.4% of the total water consumption evaluated in the three years.  相似文献   

2.
3.
A new method was developed in this study for producing a clear-sky Landsat composite for cropland from cloud-contaminated Landsat images acquired in a short time period. It used Thiel–Sen regression to normalize all Landsat scenes to a MODIS image to make all Landsat images radiometrically consistent and comparable. Pixel selection criteria combining the modified maximum vegetation index and the modified minimum visible reflectance selection methods were designed to enhance the pixel selection of land/water over cloud/shadow in the image compositing. The advantages of the method include (1) avoiding complicated atmospheric corrections but with reliable surface reflectance results, (2) being insensitive to errors induced by image co-registration uncertainties between Landsat and MODIS images, (3) avoiding the lack of samples for the regression analysis using the full Landsat scenes (rather than overlay regions), and (4) enhancing cloud/shadow detection. The composite image has MODIS-like surface reflectance, thus making MODIS algorithms applicable for retrieving biophysical parameters. The method was automatically implemented on a set of 13 cloud-contaminated (>39%) Landsat-7 (Scan-Line Corrector-Off) and Landsat-8 scenes acquired during peak growing season in a crop region of Manitoba, Canada. The result was a 95.8% cloud-free image. The method can also substantially increase the usage of cloud-contaminated Landsat data.  相似文献   

4.
Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat’s sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat images. However, incorporating only STARFM-predicted images for key dates decreased average classification error by 2% points (from 21% to 19%) compared to using only Landsat images. In particular, if only a single Landsat image was available, adding STARFM predictions for key dates significantly decreased the average classification error by 4 percentage points from 30% to 26% (p < 0.05). We conclude that adding STARFM-predicted images can be effective for improving crop-type classification when only limited Landsat observations are available, but carefully selecting images from a full set of STARFM predictions is crucial. We developed an approach to identify the optimal subsets of all STARFM predictions, which gives an alternative method of feature selection for future research.  相似文献   

5.
An accurate map of forest types is important for proper usage and management of forestry resources. Medium resolution satellite images (e.g., Landsat) have been widely used for forest type mapping because they are able to cover large areas more efficiently than the traditional forest inventory. However, the results of a detailed forest type classification based on these images are still not satisfactory. To improve forest mapping accuracy, this study proposed an operational method to get detailed forest types from dense Landsat time-series incorporating with or without topographic information provided by DEM. This method integrated a feature selection and a training-sample-adding procedure into a hierarchical classification framework. The proposed method has been tested in Vinton County of southeastern Ohio. The detailed forest types include pine forest, oak forest, and mixed-mesophytic forest. The proposed method was trained and validated using ground samples from field plots. The three forest types were classified with an overall accuracy of 90.52% using dense Landsat time-series, while topographic information can only slightly improve the accuracy to 92.63%. Moreover, the comparison between results of using Landsat time-series and a single image reveals that time-series data can largely improve the accuracy of forest type mapping, indicating the importance of phenological information contained in multi-seasonal images for discriminating different forest types. Thanks to zero cost of all input remotely sensed datasets and ease of implementation, this approach has the potential to be applied to map forest types at regional or global scales.  相似文献   

6.
In the last two decades, a number of single-source surface energy balance (SEB) models have been proposed for mapping evapotranspiration (ET); however, there is no clear guidance on which models are preferable under different conditions. In this paper, we tested five models-Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET at high Resolution with Internalized Calibration (METRIC), Simplified Surface Energy Balance Index (S-SEBI), Surface Energy Balance System (SEBS), and operational Simplified Surface Energy Balance (SSEBop)—to identify the single-source SEB models most appropriate for use in the humid southeastern United States. ET predictions from these models were compared with measured ET at four sites (marsh, grass, and citrus surfaces) for 149 cloud-free Landsat image acquisition days between 2000 and 2010. The overall model evaluation statistics showed that SEBS generally outperformed the other models in terms of estimating daily ET from different land covers (e.g., the root mean squared error (RMSE) was 0.74 mm day−1). SSEBop was consistently the worst performing model and overestimated ET at all sites (RMSE = 1.67 mm day−1), while the other models typically fell in between SSEBop and SEBS. However, for short grass conditions, SEBAL, METRIC, and S-SEBI appear to work much better than SEBS. Overall, our study suggests that SEBS may be the best SEB model in humid regions, although it may require modifications to work better over short vegetation.  相似文献   

7.
The Caatinga biome, located in the northeastern region of Brazil, is the most populated dryland region on the planet and extremely vulnerable to land degradation due to climatological and anthropogenic factors. Energy partitioning substantially influences the local climate and affects the water cycle, which is of utmost importance for the economy and livelihood of the region. Recently, eddy covariance (EC) towers were installed in the area; thus, the scientific community can thoroughly assess the water and energy fluxes over this unique biome. While EC towers have a high degree of accuracy, they only measure energy fluxes over a small land footprint. Given the biome spatial heterogeneity, the use of EC-based techniques has the limitation of not comprehensively representing water and energy fluxes profiles over the entire region. Incorporating remote sensing (RS) data into the landscape analysis is a feasible solution to overcome this issue, given that satellite data can capture the phenomena represented by the EC measurements across large spatial scales. Our research studied the capability of the Surface Energy Balance Algorithm for Land (SEBAL) and MOD16-ET products to represent the EC measurements regarding energy and mass exchange, with an ultimate objective of applying the best approach to assess these fluxes regionally. We applied the SEBAL model using only remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The MOD16-ET model uses a different approach but is also based on MODIS data. Our analysis was based on three years (2014–2016) of data, which was limited to the availability of the EC tower data. We found that for the EC-based measurements, energy balance closure (EBC) achieved an average of 0.84, which is considerably high for the region. This is possibly due to the EC tower being installed on a preserved Caatinga plot, with reduced heterogeneity and higher plant density. When analyzing RS-based products to represent ET profiles in the region, we found that the SEBAL model accurately represented water fluxes during the wet season but not the dry season, whereas the MOD16-ET showed a better agreement with EC-based water fluxes throughout all the seasons. SEBAL inaccuracy in drylands is partially due to the narrow range between the cold and hot pixels in an image, as the algorithm relies on this range for input parameters, especially in the dry season. Therefore, we concluded that MOD16-ET is capable of better-representing water fluxes in the Caatinga region. We analyzed the fluxes regionally and quantified annual ET for the three years. These results are especially relevant for local policymakers on dealing with water and landscape issues in a region where the livelihood and well-being of the population is inextricably bound to water availability.  相似文献   

8.
Mapping plant communities and documenting their changes is critical to the on-going Florida Everglades restoration project. In this study, a framework was designed to map dominant vegetation communities and inventory their changes in the Florida Everglades Water Conservation Area 2A (WCA-2A) using time series Landsat images spanning 1996–2016. The object-based change analysis technique was combined in the framework. A hybrid pixel/object-based change detection approach was developed to effectively collect training samples for historical images with sparse reference data. An object-based quantification approach was also developed to assess the expansion/reduction of a specific class such as cattail (an invasive species in the Everglades) from the object-based classifications of two dates of imagery. The study confirmed the results in the literature that cattail was largely expanded during 1996–2007. It also revealed that cattail expansion was constrained after 2007. Application of time series Landsat data is valuable to document vegetation changes for the WCA-2A impoundment. The digital techniques developed will benefit global wetland mapping and change analysis in general, and the Florida Everglades WCA-2A in particular.  相似文献   

9.
In the studies reteted to surface energy balance, satellite data provides important inputs for estimating regional surface albedo and evapotranspiration. The paper describes the use of satellite data in determining the surface emissivity over heterogeneous a’reas by taking Normalized Difference Vegetation Index (NDVI) as modulating parameter at pixel resolution. The estimated emissivity values have been used to find the surface temperature at the pixel scale. Landsat-TM-visible, NIR, TIR bands data and some ground meteorological data have been used in an energy balance model for estimating surface albedo and evapotranspiration. The ET values derived from the model are in good agreement with the values obtained with. ‘CENTURY MODEL’ and ground observations over the area, suggesting the possible use of this approach fot regional scale studies on evapotranspiration.  相似文献   

10.
本文以陇中黄土高原的祖厉河流域为研究区,基于Landsat系列遥感影像,利用主成分变换方法,与地面温度和植被指数相结合,进行土地利用/土地覆盖提取研究,在此基础上,探讨祖厉河流域土地利用/土地覆盖变化(LUCC)及其驱动因素。利用基于TM影像的SEBAL(Surface Energy Balance Algorithm for Land)模型,从祖厉河流域三期影像提取了区域蒸散发通量。首先进行了NDVI、比辐射率和地面温度等地表参数的计算,然后反演了地表的净辐射、土壤热通量和感热通量,根据能量守恒最终获得日蒸散发量。结合气象观测数据反演作物系数,最后计算月蒸散发量。对同期的土地利用/土地覆盖数据和陆面蒸散发量进行对比分析,探讨了土地利用类型的变化对流域内能量和水分时空分异的影响。  相似文献   

11.
Penman–Monteith method adapted to satellite data was used for the estimation of wheat crop evapotranspiration during the entire growth period using satellite data together with ground meteorological measurements. The IRS-1D/IRS-P6 LISS-III sensor data at 23.5 m spatial resolution for path 096 and row 059 covering the study area were used to derive, albedo, normalized difference vegetation index, leaf area index and crop height and then to estimate wheat crop evapotranspiration referred to as actual evapotranspiration (ETact). The ETact varied from 0.86 to 3.41 mm/day during the crop growth period. These values are on an average 16.40 % lower than wheat crop potential evapotranspiration (ETc) estimated as product of reference crop evapotranspiration estimated by Penman–Monteith method and lysimetric crop coefficient (Kc). The deviation of ETact from ETc is significant, when both the values were compared with t test for paired two sample means. Though the observations on ETact were taken from well maintained unstressed experimental plot of 120 × 120 m size, there was significant deviation. This deviation could be attributed to, the satellite images representing the actual crop evapotranspiration as function crop canopy biophysical parameters, condition of the crop stand, climatic and soil conditions and the microclimate variation over area of one hectare. However, Penman–Monteith method represents a flat rate of specific growth stage of the crop.  相似文献   

12.
Beijing City has suffered from groundwater-induced subsidence since the late 1930s and the over-exploration of groundwater could lead to subsidence as much as ?12.0 cm?yr?1. Previous studies on the ground deformation at Beijing City mainly focused on the period before the year of 2014 when a mega-engineering project was launched to reduce water shortage in Beijing. To study the most recent ground deformation, 19 L-band ALOS-1 PALSAR images (June 2007–January 2011), 24 C-band Sentinel-1 SAR images (June 2015–November 2016) together with 9 ALOS-2 PALSAR acquisitions (September 2014–February 2017) were analysed in this work. Levelling measurements were exploited to verify the ALOS-1-based time series InSAR (TS-InSAR) result while Sentinel-1 and ALOS-2 result were cross-verified with each other. Furthermore, the whole study area was divided into four sub-zones, and the result indicated that the subsidence rates over five townships, Cuigezhuan, Jinzhan, Liyuan, Songzhuang and Yanjiao were accelerating and more attentions should be paid. On the contrary, the town centre of Douge Zhuang township experienced a decreasing trend between these two temporal-periods. Additionally, the time series measurements with respect to five selected measurement points and the profile line along the subsidence hot spots were analysed.  相似文献   

13.
为削弱混合像元对植被参数反演的影响,提出了基于混合像元分解理论反演路域植被等量水厚度的方法。利用PRO4SAIL模型正演获得的高光谱窄波段数据,模拟Landsat 8遥感影像宽波段植被冠层光谱数据,并进行等量水厚度的敏感植被指数的筛选;对覆盖研究区域的Landsat 8遥感影像进行线性混合像元分解,获取更加精确的植被冠层光谱反射率;同时,利用支持向量机构建等量水厚度估测模型,实现对路域植被等量水厚度的遥感反演。研究结果表明,利用混合像元分解后得到的植被冠层光谱参与模型反演得到的路域植被等量水厚度更加符合实际情况,为遥感影像反演植被参数提供了有效数据。  相似文献   

14.
Cloud cover is generally present in remotely sensed images, which limits the potential of the images for ground information extraction. Therefore, removing the clouds and recovering the ground information for the cloud-contaminated images is often necessary in many applications. In this paper, an effective method based on similar pixel replacement is developed to solve this task. A missing pixel is filled using an appropriate similar pixel within the remaining region of the target image. A multitemporal image is used as the guidance to locate the similar pixels. A pixel-offset based spatio-temporal Markov random fields (MRF) global function is built to find the most suitable similar pixel. The proposed method was tested on MODIS and Landsat images and their land surface temperature products, and the experiments verify that the proposed method can achieve highly accurate results and is effective at dealing with the obvious atmospheric and seasonal differences between multitemporal images.  相似文献   

15.
Landsat images have been used in conjunction with topographical and geological information to prepare soil map of Mudhol taluk in Bijapur district, Karnataka state. The map has been compared with the reconnaisance map prepared by conventional method using 1:63,360 scale Survey of India toposheets. The study reveals that more accurate soil maps in terms of boundary delineation and composition of soil mapping units could be prepared by interpretation of Landsat images with adequate ground data. The method can thus be used in revising and improving many of the existing reconnaissance soil maps prepared by conventional method.  相似文献   

16.
潘雪琛  姜挺  余岸竹  王鑫  张一 《遥感学报》2019,23(4):673-684
针对遥感卫星影像几何定位时实测控制数据不足的情况,提出利用影像范围内基准影像数据辅助定位提高精度的方法。由遥感影像匹配得到同名像点,利用高精度影像数据和高程数据获取物方平面和高程坐标后,将其视为精度较低的控制点参与区域网平差,从而实现在不额外增加实测控制条件的情况下提高定位精度。经过在国内外3个地区进行一系列试验,验证了方法的可行性和有效性,对提升线阵遥感影像几何定位精度效果显著。  相似文献   

17.
Since the collapse of the Soviet Union, the crop cultivation structure in the Aral Sea Basin has changed dramatically, and these changes are worth studying. However, historical crop remote sensing mapping at the watershed scale remains challenging, especially crop misclassification at the cropland edge due to mixed pixels. Therefore, we proposed a field segmentation approach to constrain field edges based on time-series Sentinel-2 remote sensing images and the Google Earth Engine platform and then employed the random forest algorithm to perform crop classification based on time series Landsat/Sentinel-2 images and crop phenology information to produce historical crop maps in the Aral Sea Basin from the 1990s onward. The results showed that the intersection over union between the extracted field edges and in situ-measured field size data was 0.65. The overall accuracy of crop mapping was 95.2% in 2019. Then, we extended our method to historical mapping over the 1991–2015 period with accuracies ranging from 82.8% to 91.3%. Moreover, our method applied to historical mapping works well in terms of accuracy and policy matching. These findings indicate that our method can accurately distinguish cropland edges to reduce classification errors due to mixed pixels. This method is promising for solving the cropland edge problem for historical crop mapping in the Aral Sea Basin and can potentially provide a reference for historical crop classification in other watersheds of the world.  相似文献   

18.
逯跃锋 《测绘学报》2014,43(8):879-879
本文提出将矢量空间数据与影像数据间配准转换到矢量空间数据间匹配的思路,并开展了相关研究。本文主要思路是通过对影像数据进行基于形状特征的提取及矢量化,然后利用矢量空间数据间匹配方法对矢量化后数据和现有矢量空间数据进行匹配,获取匹配实体对;在获取的匹配实体对中选取控制点对,在矢量化后数据中选取控制点,将所选取的控制点反馈到原始遥感影像上进而获得控制点相应的像元坐标;最后应用矢量化后数据中控制点的像元坐标数据和现有矢量空间数据中对应的同名点坐标数据对原始影像进行几何纠正,从而实现矢量空间数据和影像数据的配准。  相似文献   

19.
将采用地面三维激光扫描(terrestrial laser scanning, TLS)、地基合成孔径雷达干涉测量(ground-based interferometric synthetic aperture radar, GB-InSAR)和无人机航空摄影测量(unmanned aerial vehicle photography, UAV)的综合遥感方案应用于崩塌体应急监测。引入迭代最近点法(iterative closest point, ICP),首先实现TLS点云和UAV影像离散点云配准;然后,利用几何映射方法实现GB-InSAR二维形变图与TLS点云三维匹配;针对崩塌体应急缺少人工目标辅助校正几何映射偏差的问题,综合目视解译以及峰值相关性分析提取各数据间的同名特征点,根据同名特征点计算空间坐标变换参数,建立变换方程来完成误匹配纠正。利用所提的匹配方法处理模拟数据及某滑坡崩塌残余体实际监测数据,结果表明实测匹配精度达像素级,满足应急监测需求。  相似文献   

20.
FY-2卫星S-VISSR数据几何纠正研究   总被引:1,自引:0,他引:1  
提出了一种简单高效的FY-2卫星S-VISSR数据的几何纠正方法。该方法以FY-2标称投影图像(NOM)经纬度对照表作为参考图像,FY-2卫星S-VISSR数据作为输入图像,首先利用S-VISSR数据提供的简化格网数据在两幅图像间获取同名点,然后根据同名点寻找两幅图像间的几何变换模型,最后对S-VISSR数据进行几何纠正。实验表明,利用该方法能够快速地完成对FY-2E和FY-2D卫星S-VISSR数据的几何纠正,其精度达到了1个像素左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号