首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据河池气象站2005年7-8月逐日高空探测资料及地面、500hPa、850hPa实况天气图资料,利用天气学方法,重点分析2005年河池市夏季7-8月份出现高温天气的原因。结果表明:前期单站气象要素变化、副热带高压稳定维持及台风路经偏东与河池市夏季持续高温天气有密切关系。  相似文献   

2.
周涛  乔琪 《贵州气象》2004,28(Z1):49-50
通过分析形成2003年夏季高温的短期形势场、数值产品物理量场及气候环境,得出副高强度极度偏强,西伸脊点极度偏西,极涡极度偏强,中高纬无阻塞形势是造成今夏高温少雨的主要因素.  相似文献   

3.
The Center for Ocean?CLand?CAtmosphere Studies Atmospheric General Circulation Model is used to investigate the role of global boundary conditions of sea surface temperature (SST) in the establishment and maintenance of the European heat wave of 2003 summer. It is found that the global SST anomalies can explain many major features of the European heat wave during the summer of 2003. A further experiment has investigated the role of SST outside the Mediterranean area. This supplements the results of a previous study where the role of warm Mediterranean SST was analyzed. The results suggest that the SST anomalies had an additional effect of reducing the baroclinicity in the European area reinforcing the blocking circulation and helping to create ideal conditions for the establishment of the heat wave.  相似文献   

4.
The heat wave affecting Europe during summer of 2003 is analyzed in detail with observational and reanalysis data. Surface, middle and upper troposphere analysis reveal particular circulation patterns related to an atmospheric blocking condition. In general seasonal anomalies, like this intense heat wave, are strongly related to boundary conditions. Composites and empirical orthogonal functions analysis provide evidence for an organized structure in the sea surface temperature (SST) anomaly field: high SSTs in the Mediterranean basin, the North Sea and further north toward the Arctic Circle were observed mainly in the months of June and August. The outcome of this analysis on observational data shows the SST as one of the possible factors in enhancing the heat wave in the European area.  相似文献   

5.
1. IntroductionThe Asian summer monsoon circulation is a thermally driven circulation, which arisesprimarily from the temperature differences between the warmer continental areas of theNorthern Hemisphere and the oceans of the Southern Hemisphere. The complex feedback between the flow field and the heating, especially through the interaction between thelarge--scale flow and moist convection, is yet to be well understood. Nevertheless, this facetensures the prominence of the summer monsoon ci…  相似文献   

6.
通过对2003年7月末~8月上旬贵州省高温天气的大尺度环流形势背景分析,并与历年同期500hPa环流特征对比,发现副热带高压强盛稳定、大陆高压与副高合并导致副高增强,是造成贵州省东部、北部夏季高温天气的主要原因。  相似文献   

7.
Presented are the explanations of reasons for the anomalous heat in summer of 2010 in the central area of the European part of Russia. It is demonstrated that this event occurred due to the beating of the solar annual (365 days) and lunar annual (355 days) fluctuations of air temperature. To substantiate this conclusion, the data are given on the synchronization of changes in atmospheric processes with the tidal variations of the Earth??s rotation velocity and on the nature of lunar cycles. Illustrated are the evidences of their existence in air temperature fluctuations. Revealed is the sequence of anomalously hot summer seasons in 1901, 1936 (1938), 1972, and 2010 corroborating the existence of the 35-year period of air temperature beats. Proposed is a mechanism of the impact of luni-solar tides on the air temperature based on the interaction between the gravitational luni-solar tides and the radiation conditions in the atmosphere (caused by the cloudiness amount variations).  相似文献   

8.
We investigate European summer (July–August) precipitation variability and its global teleconnections using the NCEP/NCAR reanalysis data (1950–2010) and a historical Coupled Model Intercomparison Project climate simulation (1901–2005) carried out using the ECHAM6/MPIOM climate model. A wavelike pattern is found in the upper tropospheric levels (200 hPa) similar to the summer circumglobal wave train (CGT) extending from the North Pacific to the Eurasian region. The positive phase of the CGT is associated with upper level anomalous low (high) pressure over western (eastern) Europe. It is further associated with a dipole-like precipitation pattern over Europe entailing significantly enhanced (reduced) precipitation over the western (eastern) region. The anomalous circulation features and associated summer precipitation pattern over Europe inverts for the negative CGT phase. Accordingly, the global teleconnection pattern of a precipitation index summarizing summer precipitation over Western Europe entails an upper level signature which consists of a CGT-like wave pattern extending from the North Pacific to Eurasia. The imprint of the CGT on European summer precipitation is distinct from that of the summer North Atlantic Oscillation, despite the two modes of variability bear strong similarities in their upper level atmospheric pattern over Western Europe. The analysis of simulated CGT features and of its climatic implications for the European region substantiates the existence of the CGT-European summer precipitation connection. The summer CGT in the mid-latitude therefore adds to the list of the modes of large-scale atmospheric variability significantly influencing European summer precipitation variability.  相似文献   

9.
聂祥  胡跃文 《贵州气象》2004,28(2):10-13
使用毕节地区大量的历史气温资料,与2003年的气温资料进行对比分析。得知2003年多个气温数据超过历史最大值,有气候变暖的趋势。  相似文献   

10.
11.
通过对黔东南2003年夏季酷暑天气特征进行分析,指出了该地区酷暑天气的预报着眼点。  相似文献   

12.
To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around  (26 ± 6)%  , a dominant biogenic contribution of on average  (73 ± 7)%  in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to  (1.4 ± 0.2)  in summer and up to  (2.5 ± 1.0)  in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3–1.7.  相似文献   

13.
The influence of ENSO on the summer climate change in China and its mechanism from the observed data is discussed. It is discovered that in the developing stage of ENSO, the SST in the western tropical Pacific is colder in summer, the convective activities may be weak around the South China Sea and the Philippines. As a consequence, the subtropical high shifted southward. Therefore, a drought may be caused in the Indo-China peninsula and in the South China. Moreover, in midsummer the subtropical high is weak over the Yangtze River valley and Huaihe River valley, and the flood may be caused in the area from the Yangtze River valley to Huaihe River valley. On the contrary, in the decaying stage of ENSO, the convective activities may be strong around the Philippines, and the subtropical high shifted northward, a drought may be caused in the Yangtze River valley and Huaihe River valley.  相似文献   

14.
Based on the AIRS satellite spectrometer data (the Aqua platform), the peculiarities are studied of the field of total ozone (TO) under prolonged blocking conditions over the European part of Russia in summer 2010. It is revealed that the spatial distribution of TO values during the period of blocking was characterized by negative TO anomalies (up to -37 DU on the first ten days of August) over the western and northern peripheries of the blocking anticyclone and by positive TO anomalies (up to 60 DU) over the troughs adj oinmg the anticyclone. Possible mechanisms of the formation of TO anomalies are discussed. The results are presented of the validation of TO measurements with the AIRS spectrometer in May-September 2010 obtained from the data of TO measurements with Brewer spectrophotometers at Kislovodsk and Obninsk stations of the global ozone network.  相似文献   

15.
肖莺  杜良敏  高雅琦 《暴雨灾害》2020,24(6):571-577

利用湖北省梅雨监测资料、国家气候中心新百项指数和NCEP/NCAR环流资料,分析了2020年湖北梅雨异常特征及其成因。结果表明:(1)2020年湖北梅雨持续时间异常长,为54 d,仅次于1996年;梅雨量异常多、强度强、雨日率大,均为1961年以来第1位。(2)高空西风急流、副热带高压、夏季风系统的冬夏调整季节性进程早,是造成湖北入梅早的主要原因。西风急流和副热带高压在7月下旬北跳,较常年时间偏晚,导致了出梅晚。入梅早、出梅晚,梅雨持续时间异常长。(3)在前冬El Niño事件、春夏热带印度洋海温偏暖和北大西洋三极子负位相的共同影响下,欧亚中高纬经向环流发展,冷空气活跃,副热带高压强且位置稳定,西侧水汽输送强,冷暖气流在长江中下游交汇,造成湖北省梅雨量异常偏多。

  相似文献   

16.
The results of two oceanographic surveys, carried out by TINRO-Center in August 2003 and 2007 in the southwestern part of the Chukchi Sea under conditions of opposite regimes of atmospheric circulation in the Eastern Arctic, are given. A stationary anticyclone with the center over the Beaufort Sea in 2007 favored the transport of warm air masses to the Arctic basin and more rapid ice melting. The surface layer temperature to the east of Wrangel Island reached 12°C (6–8°C above the normal). The upwelling of bottom waters was registered in the coastal zone due to the southeastern winds, the Siberian coastal current was not observed. In summer 2003, on the contrary, the cyclonic circulation type prevailed over the eastern seas of the Arctic, the northwestern winds in the coastal zone favored the spreading of the Siberian coastal current almost up to Bering Strait, the water temperature was 2–3°C below normal. The coastal thermal front was formed in both situations: in the first case, due to upwelling, in the second case, due to the spreading of cold coastal desalinated East Siberian waters.  相似文献   

17.
By using the monthly ERA-40 reanalysis data and observed rainfall data, we investigated the effect of the Indian summer monsoon (ISM) on the South Asian High (SAH) at 200 hPa, and the role played by the SAH in summer rainfall variation over China. It is found that in the interannual timescale the east–west shift is a prominent feature of the SAH, with its center either over the Iranian Plateau or over the Tibetan Plateau. When the ISM is stronger (weaker) than normal, the SAH shifts westward (eastward) to the Iranian Plateau (Tibetan Plateau). The east–west position of SAH has close relation to the summer rainfall over China. A westward (eastward) location of SAH corresponds to less (more) rainfall in the Yangtze-Huai River Valley and more (less) rainfall in North China and South China. A possible physical process that the ISM affects the summer rainfall over China via the SAH is proposed. A stronger (weaker) ISM associated with more (less) rainfall over India corresponds to more (less) condensation heat release and anomalous heating (cooling) in the upper troposphere over the northern Indian peninsula. The anomalous heating (cooling) stimulates positive (negative) height anomalies to its northwest and negative (positive) height anomalies to its northeast in the upper troposphere, causing a westward (eastward) shift of the SAH with its center over the Iranian Plateau (Tibetan Plateau). As a result, an anomalous cyclone (anticyclone) is formed over the eastern Tibetan Plateau and eastern China in the upper troposphere. The anomalous vertical motions in association with the circulation anomalies are responsible for the rainfall anomalies over China. Our present study reveals that the SAH may play an important role in the effect of ISM on the East Asian summer monsoon.  相似文献   

18.
B. G. Hunt 《Climate Dynamics》2014,42(9-10):2271-2285
Output from a multi-millennial control simulation of the CSIRO Mark 2 coupled model has been used to investigate quantitatively the relation between the Indian summer monsoon rain and El Nino/Southern Oscillation events. A moving window correlation between these two features revealed marked interannual and multi-decadal variability with the correlation coefficient varying between ?0.8 and +0.2. This suggests that current observations showing a decline in this correlation are due to natural climatic variability. A scatter diagram of the anomalies of the Indian summer monsoon rainfall and NINO 3.4 surface temperature showed that in almost 40 % of the cases ENSO events were associated with rainfall anomalies opposite to those implied by the climatological correlation coefficient. Case studies and composites of global distributions of surface temperature and rainfall anomalies for El Nino (or La Nina) events highlight the opposite rainfall anomalies over India that can result from very similar ENSO surface temperature anomalies. Composite differences are used to demonstrate the unique sensitivity of Indian summer monsoon rainfall anomalies to ENSO events. The problem of predicting such anomalies is discussed in relation to the fact that time series of the monsoon rainfall, both observed and simulated, consist of white noise. Based on the scatter diagram it is concluded that in about 60 % of the cases seasonal or annual prediction of monsoon rainfall based on individual ENSO events will result in the correct outcome. Unfortunately, there is no way, a priori, of determining for a given ENSO event whether the correct or a rogue prediction will result. Analysis of the present model’s results suggest that this is an almost world-wide problem for seasonal predictions of rainfall.  相似文献   

19.
While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model??s mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves and suggest a weak influence of prescribed observed SST in the northern extratropics. Results therefore indicate that improving the tropical divergent circulation and its response to tropical SST anomalies remains a key issue for increasing the skill of extratropical seasonal predictions, not only in the winter hemisphere but also in the boreal summer hemisphere where the prediction of heatwave and drought likelihood is expected to become an important challenge with increasing concentrations of greenhouse gases.  相似文献   

20.
The state-of-the-art WRF model is used to investigate the impact of the antecedent soil moisture on subsequent summer precipitation during the East Asian summer monsoon (EASM) period. The control experiment with realistic soil moisture condition can well reproduce the seasonal pattern from low- to high- atmosphere, as well as the spatial distribution of precipitation belt in East China. Compared with the control experiment, the sensitivity experiment in which the initial soil moisture is reduced generates more precipitation along the East China Sea, and less rainfall over both Central and South China. This suggests that the effect of initial soil moisture on monsoonal precipitation in East China is regionally dependent. The influence on precipitation is mostly attributed to the change in precipitation from mid July to late August. The initial soil moisture condition plays a role in changing the seasonal pattern and atmospheric circulation due to the weak heating and geopotential gradient, leading to a reduction in southeasterly flow and moisture flux from South China Sea. The changes between DRY and CTL runs result in reduced southerly wind over the ocean (south of ˜25 °N) and enhanced northerly wind over the land (north of ∼25 °N). The temperature and associated circulation changes due to drier initial soil moisture anomaly result in reduced southerly winds over East China, and therefore a weakened EASM system. The averaged moisture flux decreases significantly over Central China but increases along the East China Sea. In addition, the drier soil moisture perturbation exerts an effect on suppressing (enhancing) vertical velocity over Central China (along the East China Sea), thus leading to more (less) cloud water and rain water. Therefore, the influence of soil moisture exerts an opposite impact on surface precipitation between these two regions, with more and less accumulation rainfall in Central China and along the East China Sea, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号