首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study particle behaviour and its time-variability in the near-bottom layer on the Porcupine Abyssal Plain (48°50′N, 16°30′W, 4850 m), long-term measurements were made of currents, and nephelometry and particle samples were collected using an autonomous lander between mid-1996 and mid-1998. Water samples, collected in the Bottom Nepheloid Layer within 1000 m of the bottom, were filtered for suspended particles whose contents of organic carbon, nitrogen and pigments were determined. This study was co-ordinated with a water column flux study and a detailed programme of benthic studies to understand how the abyssal boundary layer responds to and modifies inputs of organic matter from the water column (MAST3/BENGAL programme).There were strong seasonal fluctuations in the near-bottom (2 m above the bottom, mab) particle flux, whose variation were correlated in time with the water column fluxes. During the periods of peak flux, the near-bottom flux was sometimes higher than that recorded higher up in the water column, but not always at other times. These excesses were attributed to the resuspension events, since we observed a correlation between current speed and nephelometry. However, in summer the peak in the particle resuspension flux could not be explained by the variations in the tidal amplitude. Instead we attribute it to the large quantities of fresh large particles (aggregations) that had just arrived on the bottom; it was probably linked to the feeding activity and sediment reworking by the rich and varied benthic and benthopelagic megafauna.In both 1997 and 1998, the nephelometry signal (directly related to fine particle concentration) and its variability increased after the peaks in large particle flux with a time-lag of 2–3 months. We assume that this time lag corresponds to the time it takes for the large fresh particles, once they have settled on the bottom, to be disaggregated into smaller particles, and hence become subject to resuspension in the quiet current conditions then prevailing in the BENGAL area. The suspended particle analyses confirm the vertical structure of the Bottom Nepheloid Layer, the lower part of which corresponds to the Bottom Mixed Layer (BML) where resuspension and mixing are higher.  相似文献   

2.
Several important mechanisms for storm-induced entrainment of estuarine cohesive sediments are analyzed using field measurements collected in a moderately energetic estuary, central Long Island Sound, U.S.A. The sediment concentration and hydrographic data were obtained by an array of sensors mounted at 1 m above the bottom. The bottom sediment in the study site composed mostly of silt and silty sand. The study showed that the bottom shear stress, computed using a wave-current interaction model, increased significantly during the episodic wind events. A large resuspension event was triggered by a frontal passage when strong wind-driven currents augmented the tidal currents. The timing of storm waves with respect to the tidal phase also was a critical factor. Based on the changes of suspended sediment concentration, the bottom appeared to respond to the shear stress in two phases: the tidal resuspension and the storm-induced erosion. During each tidal cycle, entrainment was associated with resuspension of high water content, loosely consolidated material. During episodic events, a thin layer of more consolidated bed below the sediment-water interface was eroded by the enhanced bottom stress.  相似文献   

3.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

4.
Resuspension of bottom sediments by waves and tidal currents was investigated in three characteristic environments of middle Chesapeake Bay (shallow platform, deep platform, and main channel). In the shallow near shore platform wind waves frequently resuspended significant amounts of sediment, some of which was transported offshore. In both the shallow and adjacent deep platform regions, tidal currents were too weak (<20 cm cm/sec) to resuspend bottom sediments. In the main channel, peak current velocities were substantially stronger (40 cm/sec), but were still not competent to erode the bottom. The stability of the bottom in this area is related to the activities of the benthic organisms which are influenced by seasonal anoxia. University of Maryland Center for Environmental and Estuarine Studies (CEES) Contribution No. 1572.  相似文献   

5.
A simulation of suspended sediment movement relating to tidal and wave forcing during a winter monsoon in November 1983 in the Huanghai and East China Seas continental shelf is attempted by using the model describing the cohesive/non-cohesive sediment resuspension generated by interactions between currents and waves.model simulation showed that sediment concentration was increased by resuspension at shallow depths during the strong storm conditions due to high bottom stress interacted between currents and waves. This result is in general agreement with observations in horizontal distribution of suspended sediment distribution.At three current meter mooring positions off the southern Shandong Peninsula resuspension occurred only at a depth of 22m,nearest coastal position and at deeper parts at depths of 51 and 80m wave-current interaction effects were not significant. It has shown that the present model simulation demonstrated the capability of reproduction of suspended sediment movement under wintertime extreme event reasonably well.  相似文献   

6.
The Meriadzek Terrace forms part of the continental margin in the Bay of Biscay at a depth between that of the Continental shelf and the abyssal plain. Reflection profiles show that it is bounded on either side by basement ridges with a sediment infill between the ridges. It was probably formed by downfaulting of the continental shelf, possibly connected with the opening of the Bay of Biscay.  相似文献   

7.
Year long measurements of bottom pressure were made at 2,036 m depth in Sagami Trough, at 2,538 m depth in Suruga Trough, and at 32 m depth in the south of Minami-Daitojima Island. Amplitudes and phase lags of the major constituents of tides were estimated by the response method, and they were compared with the observational results at several tide stations operated by the Japan Meteorological Agency. A comparison with Schwiderski's global models for the eight tidal constituents showed that the amplitudes were in good accordance to one another within 3 cm, and that the differences of phase lags were less than 15°. The largest portion of the variations of the bottom pressure was caused by the tides: the variance of the major eight constituents was more than 98.5% as large as the total variance. The measurements show that tidal waves can be recorded offshore with a sufficient accuracy by the quartz sensors. Drifts of indication of the pressure gauges were significant and they prevented detection of a long-term variation which might be caused by fluctuations of the ocean currents or by the eddies.  相似文献   

8.
Fifty-six samples representing 6 sediment cores taken along the N.W. European Continental Margin from the shelf, slope and abyssal plain of the Goban Spur and Meriadzek Terrace were quantitatively analysed for total hydrolyzable amino acids (THAA) and clay minerals. In descending order, the five most abundant amino acids making up more than 70% of the total were: aspartic acid, glycine, serine, alanine and glutamic acid. Clay mineral proportions were typical for the N.E. Atlantic, in order of descending abundance: illite, kaolinite, chlorite, smectite and mixed layers.The Meriadzek Terrace area is characterised by fine grain suspension sedimentation with a low pelagic carbonate input and the lowest content of THAA. In contrast, the Goban Spur transect is characterised by much higher carbonate inputs and more vigorous hydrodynamics as judged from granulometry and the high abundance of minerals of shelf and continental origin and a generally higher THAA content. The pelagic portion of THAA deposited at the sea floor is more readily mineralised during early diagenesis than the more ‘refractory', clay mineral-associated continental portion. Along this margin the average mineralization of THAA down to 25 cm in the sediment is about 54%. There is a significant affinity between chlorites and amino acids which we suggest may involve the formation of ionic bonds between the octahedral layers of the clay and the amino acids.  相似文献   

9.
本研究以崇明东滩2015年4月实测潮间带水沙数据为基础,分析了潮沟、盐沼及光滩的水沙特征,重点研究了潮沟系统及邻近潮滩潮周期内悬沙通量情况。结果表明:(1)潮沟表层沉积物比潮滩细,二者平均中值粒径分别为21.7 μm和33.0 μm,悬沙粒径由海向陆逐渐变小;(2)大、小潮沟潮周期内潮流均以往复流为主,垂向平均流速分别为15.4 cm/s和34.6 cm/s;盐沼界和光滩则以旋转流为主,平均流速分别为11.3 cm/s和28.9 cm/s;(3)潮沟中的高悬沙浓度出现在涨潮初期,最大可达7.5 kg/m3,而潮滩高悬沙浓度则出现在潮落潮中期和高水位时刻;大、小潮沟和盐沼界站涨潮阶段平均悬沙浓度大于落潮阶段,光滩站则相反。潮沟悬沙主要来自邻近水域,而潮滩悬沙则与滩面表层沉积物密切相关;(4)潮沟在潮周期内净输沙方向均指向滩地,大潮沟潮周期单宽净输沙量可达4.0 t/m;盐沼界处垂直岸线和沿岸输沙强度相近,净输沙由海向陆,潮周期离岸输沙强度为1.0 t/m;光滩沿岸输沙强度远大于垂直岸线输沙,光滩净输沙由陆向海。研究揭示了潮间带潮沟系统的强供沙能力以及研究区域光滩冲蚀,盐沼植被带淤积的动力地貌过程。  相似文献   

10.
本文使用吕宋海峡以东的潜标观测的长达1年的海流数据,重点对该海域海流的高频波动(潮流)的垂向分布及其时间变化特征进行了分析,结果表明:该海域次表层(100~160 m)的潮动能比中层(1 550 m)和深层(2 560 m)大1~2个数量级,近底层(4 040 m)的潮动能略大于中、深层;次表层为不正规半日潮流,中、深层为不正规全日潮流;各层次潮动能均在夏季(6?9月)和冬季(2?3月)增强,与M2分潮和K1分潮在夏季和冬季的增强相对应;各层次海流的高频波动以顺时针旋转为主,次表层海流近惯性周期接近当地理论惯性周期,中、深层略小于当地理论惯性周期。  相似文献   

11.
Analyses of DSRV “Alvin” core samples on the Cape Hatteras margin indicate major textural and compositional changes at depths of about 1000 and well below 2500 m. The distribution patterns of petrologic parameters correlate well with water mass flow and suspended-sediment plumes measured on this margin by other workers. Our study also shows: (a) vigorous erosion and sediment transport at depths of less than 400 m resulting from the NE-trending Gulf Stream flow; (b) deposition, largely planktonic-rich sediment released from the Gulf Stream, on the upper- to mid-slope, to depths of about 800–1200 m; (c) winnowing, resuspension and deposition induced by periodically intensified slope currents on the mid-slope to uppermost rise, between about 1000 and 2500 m; and (d) prevailing deposition on the upper rise proper (below 2500 m), from transport by the SW-trending Western Boundary Undercurrent. Sediments moved by bottom currents have altered the composition and distribution patterns of material transported downslope by offshelf spillover; this mixing of gravity-emplaced and bottom-current-transported sediment obscures depositional boundaries. Moreover, reworking of the seafloor by benthic organisms alters physical properties and changes erodability of surficial sediments by bottom currents. Measurement of current flow above the seafloor and direct observation of the bottom are insufficient to delineate surficial sediment boundaries. Detailed petrologic analyses are needed to recognize the long-term signature of processes and define depositional provinces.  相似文献   

12.
潮流场对渤、黄、东海陆架底质分布的控制作用   总被引:10,自引:0,他引:10  
运用二维潮流数学模型,模拟了渤、黄、东海陆架的M2潮汐、潮流。结果表明,渤、黄、东海陆架的潮流有强弱之分以及往复流和旋转汉之别。在此基础上,计算了8种粒径沙的湖平均悬移输沙率、潮平均推移输沙以及相应的输沙率散度。根据输沙率散度的正负,划分了海底冲刷区与淤积区。根据不同粒径泥沙输沙率散度的相对大小,确定出海底的主要底质类型为砂质沉积、粉砂质泥沉积和以粉砂为主的混合沉积。计算结果表明,海底3种主要底负类型的分布格局与海底的冲淤格局以及与输沙率矢量的发散和聚合状况基本一致。在渤、黄、东海陆架,沙脊主要在强往复流区形成,沙席主要在强或较强的旋转流区形成,泥质沉积主要在弱潮流区形成。砂质沉积、泥质沉积以及混合沉积这3种主要底质类型并非孤立存在,而是受渤、黄、东海陆架潮流场控制而形成的一个完整的潮流沉积体系。渤、黄、东海陆架的砂质沉积与泥质沉积并非残留沉积,而是潮流沉积。在没有冷涡的情况下,黄、东海陆架的典型泥质沉积在弱潮流环境中同样可以形成,因此,认为冷涡并非黄、东海陆架典型泥质沉积形成的必要条件。  相似文献   

13.
In order to examine sedimentary processes acting on tidal flats, eighteen foot valves were “plumbed” into a small tidal cove in southern New Hampshire. Transport of suspended sediment was determined by comparing concentrations (determined by filtering) at 15 and 30 cm above the tidal flats throughout a tidal cycle. In general, sediment resuspension occurs more readily on the flood tide than the ebb. The concentration of suspended sediment follows the water mass distribution and is affected to a lesser degree by tidal currents and small amplitude waves. Deposition occurs during slack water shortly after high tide primarily in the bottom regime (15 cm); it is probably related to coarser particle sedimentation. The water mass distribution was not a simple rise and fall perpendicular to the bottom contours, but rather followed a slow clockwise gyre. The net effect on the suspended sediments was to impart a “longshore” component of drift to the suspended load during the tidal cycle.  相似文献   

14.
观测红树林潮滩在波浪和潮流作用下的近底层垂向剖面悬沙浓度变化过程, 对理解海岸带植被的消能促淤机制和滨海湿地生态修复工程有着重要作用。本文以北部湾七星岛岛尾桐花树红树林潮滩为例, 基于剖面流速仪HR、声学多普勒单点流速仪ADV、浪潮仪T-wave及剖面浊度仪ASM, 获取了研究区域2019年夏季大潮连续3天的水文数据, 同时结合桐花树典型植株实测参数, 分析了潮周期内红树林潮滩近底层垂向剖面悬沙响应波浪、潮流作用及桐花树空间结构的运动过程。结果表明: 1) 桐花树潮滩近底层悬沙浓度和悬沙通量具有涨潮明显大于落潮的潮汐不对称现象, 剖面垂向高悬沙浓度区域在涨潮初期—涨急由距底部0.1~0.37m转变为距底部0.5~0.67m, 落急—落潮末期则由上部转变为下部; 2) 潮周期内悬沙起动和再悬浮阶段发生在以波浪作用主导的涨潮初期和落潮末期, 平流和沉降发生在以潮流作用为主的涨急至落急整个阶段; 3) 涨潮阶段桐花树冠层的茂密枝叶通过减缓流速拦截多于冠层上部40%以上的悬沙, 落潮水体则挟沙自陆向海经过桐花树群落, 使得悬沙浓度下降超过71%。该不对称涨、落潮动力沉积机制有利于悬沙向岸输运, 促进潮滩扩张过程。  相似文献   

15.
Sediment and hydrodynamics of the Tauranga entrance to Tauranga harbour   总被引:2,自引:2,他引:0  
To relate the textural characteristics of the bottom sediments of a tidal inlet to hydrodynamics, 45 sediment samples from the Tauranga Entrance to Tauranga Harbour were analysed for textural parameters, and tidal currents and waves were monitored. Tidal currents dominate sediment transport processes near the Tauranga Entrance although swell waves are significant on the ebb tidal delta, and wind waves may influence intertidal sediments within the harbour. The bulk of the sediment is probably derived from marine sand from the Bay of Plenty continental shelf, but tidal currents and waves have changed its textural character. In areas of swift tidal currents, particularly in the inlet channel itself, sediment is coarser, more poorly sorted, and more coarsely skewed than that in areas of slower currents.  相似文献   

16.
河口潮滩受径潮流的共同作用,在自然环境与人类活动的影响下处于不断的动态调整中,其中大型人类工程往往对其短期地貌变化和沉积物特征产生巨大影响。2013年底至2014年5月,长江口崇明东滩北部开展大规模互花米草治理工程,本文基于地面三维激光扫描技术、植被点云数据滤除算法、沉积物取样以及室内粒度分析等手段,对比了工程前后潮滩地貌与沉积物特征。研究发现:(1)完工后研究区域靠海及南侧区域出现明显冲刷,北侧虽出现淤积,但整个区域平均冲刷幅度仍达4 cm;(2)工程前研究区域沉积物平均中值粒径为29 μm,工程完工后沉积物平均中值粒径则增大到38 μm;(3)工程完工后沉积物靠海及南侧区域明显粗化,北侧沉积物则变细。结果表明,围垦工程会造成邻近潮滩大幅冲刷以及表层沉积物粗化,但潮滩不同区域地貌和沉积物特征对工程的响应仍存在空间差异性。研究揭示尽管河口潮滩长期演变过程受流域来沙条件影响,但围垦工程等局部影响因素会短期内显著改变潮滩动力地貌过程。  相似文献   

17.
黄河三角洲孤东海域沉积物及水动力   总被引:7,自引:0,他引:7  
根据黄河三角洲孤东近岸海域表层沉积物取样、水文泥沙观测和风浪资料推算,分析沉积物特征和运移趋势,并通过水动力条件(潮流和波浪)探讨沉积物起动和输移特征。结果表明,孤东海域沉积物多为粉砂类物质,由内向外逐渐变细,分选变差,丁坝的修建对周围粒径分布影响明显;沉积物运移趋势受风成余流、岸线轮廓和丁坝工程修建的影响,不同区域表现为不同的输移方向;研究区水动力表现为波浪掀沙、潮流输沙的特征,由于潮流较小,不足以引起泥沙的起动,泥沙起动主要由波浪引起。  相似文献   

18.
Current, sea level and bed-load transport are investigated in the Lower Piscataqua River section of the Great Bay Estuary, New Hampshire, USA—a well-mixed and geometrically complex system with low freshwater input, having main channel tidal currents ranging between 0.5 and 2 m s−1. Current and sea level forced by the M2M4M6 tides at the estuarine mouth are simulated by a vertically averaged, non-linear, time-stepping finite element model. The hydrodynamic model uses a fixed boundary computational domain and accounts for flooding–drying of tidal flats by making use of a groundwater component. Inertia terms are neglected in comparison with pressure gradient and bottom friction terms, which is consistent with the observed principal dynamic balance for this section of the system. The accuracy of hydrodynamic predictions in the study area is demonstrated by comparison with four tidal elevation stations and two cross-section averaged current measurements. Simulated current is then used to model bed-load transport in the vicinity of a rapidly growing shoal located in the main channel of the lower system. Consisting of coarse sand and gravel, the shoal must be dredged every five to eight years. Two approaches are taken—an Eulerian parametric method in which nodal bed-load flux vectors are averaged over the tidal cycle and a Lagrangian particle tracking approach in which a finite number of sediment particles are released and tracked. Both methods yield pathways and accumulations in agreement with the observed shoal formation and the long-term rate of sediment accumulation in the shoal area.  相似文献   

19.
Boundary currents and internal waves determine cross-slope zonation of erosion and deposition in the Faeroe-Shetland Channel. Currents were measured at 8 and 34–50 m above the bottom at three mooring sites (502, 595 and 708 m depth) for 14 days. The structure of the water column was evaluated from CTD sections, and included nepheloid layers and particulate matter concentrations. Indicators for recent deposition in the sediment (organic carbon, phytopigments, 210Pb) were measured at eight stations across the slope. Strong near-bottom currents at the upper slope sustain down-slope particle transport in a benthic nepheloid layer, which is eroded under the influence of critically reflecting M2 internal tidal waves at 350–550 m, where the major pycnocline meets the sloping bottom. Beam attenuation profiles confirmed the presence of intermediate nepheloid layers intruding into the Channel along the major pycnocline, and elevated concentrations of particulate matter and chlorophyll-a were measured at this depth. Near-bottom currents decreased with depth, thus allowing particle deposition down the slope. Inventories of excess 210Pb activity in the sediment deeper than 600 m were higher than what was expected on the basis of atmospheric input of 210Pb and production in the water column, thus indicating additional lateral inputs. Simple calculations showed that off-slope input of particles from areas shallower than 600 m may be responsible for the enhanced deposition at greater depths.  相似文献   

20.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号