首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study of the dynamics of a marine sandwave   总被引:3,自引:0,他引:3  
The movement of the crest of a sandwave was studied using cross-sectional profiles obtained from lines of sea-bed reference stakes. Measurements were made, over a six month period, before and after flood and ebb tides in relation to both spring and neap tides and surface wave conditions. Additional observations were obtained on a daily basis, over an equinoctial neap to spring to neap tidal period, in conjunction with boundary layer flow measurements. Tracer experiments were conducted to study the dispersion of sediment from the sandwave crest. The results showed that the sandwave was relatively stable at neap tides, whilst at higher tidal ranges, the crest position oscillated with successive flood and ebb tides. Net flank erosion occurred on the less steep, upstream slope during the dominant ebb tide. This, together with increased deposition on the lee slope, caused the crest to advance. It was not possible to extrapolate sandwave migration over long periods as the tidal dynamic trends were interrupted by wind stress and surface wave activity. High particle orbital velocities, generated at the sea-bed by storm waves, caused major reductions in crestal heights. Calculated volumes of sediment eroded and accreted were used, with boundary layer flow measurements, to calculate threshold velocities for the movement of the sediment and sediment transport rates.  相似文献   

2.
Tidal flats play a tremendous role for solving the problem of land use because of the crisis of population increments. Many coastal countries have carried out reclamation projects near seas in various degrees for a long time. China currently has about 2.13?million?hm2 of tidal flats that are mainly scattered in the delta plains and coastal regions near medium- to large-sized rivers. The tidal flats in China are reserves featuring dynamic growth and a capacity for continuous expansion; the tidal flat area undergoes an annual increase of over 20,000?hm2. In recent years, countries around the world have paid much attention to the marine ecological environment and have taken measures to restrict the scale and range of sea reclamation. Although widespread reclamation of tidal flats in China has taken place, such activities have also brought some negative effect: (1) water overdraft, seawater intrusion, (2) tidal gates and channel silting, (3) environment pollution, unbalanced ecosystem, and (4) loss of wetlands and threats to the survival of species. This paper examines the mechanisms associated with tidal flat dynamic growth, and points out that artificial siltation can greatly increase the growth speed of tidal flats, and the actual measured annual siltation thickness may reach 0.5?C2.7?m. At present, this paper proposes a theory relating to the ecological exploitation of this ecosystem as follows: (1) the principle of adjustment to local conditions; (2) the principle of three-dimensional distribution; (3) the principle of ecological balance; (4) the principle of green and environmental protection. In practical terms, this dynamic growth may play a significant role in mitigating conflicts relating to land use demands in coastal areas.  相似文献   

3.
深水水道作为深水油气勘探的主力储层,其内部结构及演化特征的研究对于深水油气田勘探和开发都具有非常重要的意义.基于钻井及3D地震资料,对刚果扇盆地上中新世深水水道的内部充填期次、结构和演化特征进行了分析.从层序地层学的角度出发,将研究区内的水道划分为多个不同级别层序格架内形成的水道单体和水道复合体,从而对切谷内部的水道期次和组成特征进行精细表述.研究表明,研究区内水道单体自下而上发育底部滞留、滑塌充填、侵蚀水道、加积水道、天然堤和废弃水道6种沉积微相类型,整体表现为流体能量逐步降低的过程;三级水道复合体形成于复杂的多期侵蚀-充填过程,受到海平面变化、坡度及重力流流变学特征的影响,纵向演化可划分为初始侵蚀、初始充填、加积充填、后期充填和水道废弃5个阶段,各阶段切谷内充填结构和水道平面展布特征呈现有规律的变化.   相似文献   

4.
The oolitic ironstones of the Minette were deposited during Toarcian/Aalenian times in a nearshore environment of the Paris Basin. The sedimentary sequence comprises up to 13 coarsening upward depositional cycles. The development of the cycles and different facies types are described. The iron ooids accumulated in a subtidal environment under the effects of tidal currents. Sand waves, which form an important part of the Minette sediments, were deposited under both time-velocity symmetrical and time-velocity asymmetrical tides. From the study of their internal structures the time-velocity patterns of the currents, current speeds (up to 0±9m s?1) and net transport rates have been estimated (29 g m?1 s?1 in the case of large-scale sand waves controlled by time-velocity symmetrical tides). Sand wave heights and calculated near-bed current speeds suggest a mesotidal regime. Sedimentary facies include large-scale and waves, subtidal shoals with channels and an offshore muddy shelf. Conclusions as to bathymetry are drawn from ichnofaunal associations and from the study of wave ripple marks. Finally a depositional model of the Minette iron formation is proposed which may be applicable to other oolitic ironstones.  相似文献   

5.
柴达木盆地东缘毗邻柴北缘断裂带与鄂拉山构造带的交接部位,其中新世盆地充填过程为正确认识周缘山脉隆升剥露历史提供了有效约束.本文以乌兰和查查盆地为例,通过沉积地层学研究与物源分析,刻画了柴东地区中新世2个阶段的构造地貌演化历史.中新世早期,乌兰盆地表现为典型的山间挠曲盆地,主要充填辫状河—三角洲沉积体系,其源区为盆地北侧持续抬升的柴北缘断裂带,与鄂拉山地区无明显关联;查查盆地属于典型的背驮盆地,并以稳定的辫状河道沉积为显著特征,其汇水系统起源于柴北缘断裂带中段(甚至西段),向东流经牦牛山地区后,最终汇入共和盆地.因此,该时期鄂拉山并未显著抬升,即柴东与共和盆地隶属统一的前陆盆地系统.至中晚中新世,在区域性左旋剪切作用的驱使下,包括鄂拉山在内的周缘山脉近于同时抬升,使得乌兰盆地脱离共和盆地成为封闭的欠补偿湖盆.与此同时,牦牛山断裂剧烈活动导致查查盆地所在地区整体抬升,从而缺失同时代地层沉积.  相似文献   

6.
新近纪以来,在大陆边缘以及火山基底隆起等构造背景下,安达曼海域广泛分布生物礁碳酸盐。为了更好地了解安达曼海域的构造演化以及区域古环境特征,通过高分辨率地震剖面,将台地边缘地层划分为5个地震层序。在建立的地震层序格架下,探讨了区域中新世生物礁演化模式及发育控制因素。研究认为安达曼海域东部台缘阶地中新世生物礁生长发育以及空间展布形态主要受中新世时期构造作用所形成的地势形态和海平面升降等因素联合控制。安达曼海中新世经历了裂谷期至弧后走滑拉分期,且伴随着海平面的上升。南部实皆断裂造成的东高西低的地势形态为东部阶地生物礁碳酸盐发育提供了有利场所,次级断裂造成了生物礁东西分割的格局,而海平面的稳定上升使得生物礁稳定生长。  相似文献   

7.
The Miocene-Pliocene Siwalik Group records changing fluvial environments in the Himalayan foreland basin. The Nagri and Dhok Pathan Formations of this Group in the eastern Potwar Plateau, northern Pakistan, comprise relatively thick (tens of metres) sandstone bodies and mudstones that contain thinner sandstone bodies (metres thick) and palaeosols. Thick sandstone bodies extend for kilometres normal to palaeoflow, and are composed of large-scale stratasets (storeys) stacked laterally and vertically adjacent to each other. Sandstone bodies represent single or superimposed braided-channel belts, and large-scale stratasets represent channel bars and fills. Channel belts had widths of km, bankfull discharges on the order of 103 cumecs and braiding parameter up to about 3. Individual channel segments had bankfull widths, maximum depths, and slopes on the order of 102 m, 101 m and 10?4 respectively, and sinuosities around 1-1. These rivers are comparable to many of those flowing over the megafans of the modern Indo-Gangetic basin, and a similar depositional setting is likely. Thin sandstone bodies within mudstone sequences extend laterally for on the order of 102 m and have lobe, wedge, sheet and channel-form geometries: they represent crevasse splays, levees and floodplain channels. Mudstones are relatively bioturbated/disrupted and represent mainly floodbasin and lacustrine deposition. Mudstones and sandstones are extremely disrupted in places, showing evidence of prolonged pedogenesis. These ‘mature’ palaeosols are m thick and extend laterally for km. Lateral and vertical variations in the nature of their horizons apparently depend mainly on deposition rate. The 500 m-thick Nagri Formation has a greater proportion and thicker sandstone bodies than the overlying 700 m-thick Dhok Pathan Formation. The thick sandstone bodies and their large-scale stratasets thicken and coarsen through the Nagri Formation, then thin and fine at the base of the Dhok Pathan Formation. Compacted deposition rates increase with sandstone proportion (0-53 mm/year for Nagri, 0-24 mm/year for Dhok Pathan), and palaeosols are not as well developed where deposition rates are high. Within both formations there are 100 m-scale variations (representing on the order of 105 years) in the proportion and thickness of thick sandstone bodies, and tens-of-m-scale alternations of thick sandstone bodies and mudstone-sandstone strata that represent on the order of 104 years. Formation-scale stratal variations extend across the Potwar Plateau for at least 100 km, although they may be diachronous: however, 100-m and smaller scale variations can only be traced laterally for up to tens of km. Alluvial architecture models indicate that increases in the proportion and thickness of thick sandstone bodies can be explained by increasing channel-belt sizes (mainly), average deposition rate and avulsion frequency on a megafan comparable in size to modern examples. 100-m-scale variations in thick sandstone-body proportion and thickness could result from ‘regional’ shifts in the position of major channels, possibly associated with ‘fan lobes’on a single megafan or with separate megafans. However, such variations could also be related to local changes in subsidence rate or changes in sediment supply to the megafan system. Formation-scale and 100-m-scale stratal variations are probably associated with interelated changes in tectonic uplift, sediment supply and basin subsidence. Increased rates of hinterland uplift, sediment supply and basin subsidence, recorded by the Nagri Formation, may have resulted in diversion of a relatively large river to the area. Alternatively, changing river sizes and sediment supply rates may be related to climate changes affecting the hinterland (possibly linked to tectonic uplift). Climate during deposition of the Siwalik Group was monsoonal. Although the deposits contain no direct evidence for climate change, independent evidence indicates global cooling throughout the Miocene, and the possibility of glacial periods (e.g. around 10-8 Ma, corresponding to base of Nagri Formation). If the higher Himalayas were periodically glaciated, a mechanism would exist for varying sediment supply to megafans on time scales of 104-105 years. Although eustatic sea-level changes are related to global climatic change, they are not directly related to Siwalik stratigraphic changes, because the shoreline was many 100 km away during the Miocene.  相似文献   

8.
Relative growth of the Miocene pelecypod Glycymeris parilis (Conrad) was examined using allometric equations and principal components. Different parts of the shell showed contrasting growth strategies that were dictated by functional morphology and basic shell geometry. Despite the divergent developmental strategies, 93 percent of the correlation matrix variance is accounted for by overall size increase. The remaining variance mainly represents growth of the teeth, which differed considerably from other variables.  相似文献   

9.
Following the Late Aquitanian sea-level fall, tide-influenced deposition started in the North Hungarian Bay, an embayment in the Paratethys open to the north-east. The relatively narrow, funnel shape of the bay supported amplification of tidal movements, resulting in the generation of strong tidal currents. The length and the depth of the North Hungarian Bay and the connecting seaway through East Slovakia fell into the ‘Tidal Amplification Window’and thus fulfilled the conditions needed for resonant amplification of semidiurnal (M2) tides. Tide-influenced deposits were formed at both sides of the North Hungarian Bay. They reflect dominant currents in opposite directions and of different strengths at either side of the basin. This difference was the result of bottom-tide interactions. Cyclonic (anticlockwise) residual currents were induced above the asymmetrical central depression in the bay and were superimposed upon the tidal currents, producing an anticlockwise, time-and-velocity asymmetrical current system. The North Hungarian Bay and other examples show that amplification of tidal motions and formation of tide-influenced deposits may occur if basin dimensions pass through the ‘Tidal Amplification Window’. This window represents ideal conditions for resonant or amphidromic amplification of tidal currents. It determines an ideal length/depth or width/depth ratio relative to the wavelength of the astronomical tides. Thus signs of strong tidal influence in fossil basin fills can be used to reconstruct the dimensions (length, depth and width) of such basins.  相似文献   

10.
This paper is a companion to Clark (1988; hereafter Part I) which described the evolution of the Tejeda Magmatic System (TMS), a Miocene caldera complex, Gran Canaria, Spain, based on geochronologic, paleomagnetic and field data. In this study, petrochemical data are used to corroborate the history out-lined in Part I. Geochemical discriminant analysis shows that whereas the Extra-Caldera (EC) Mogan/Fataga volcanics are separated by a composition gap, no composition gap exists within the Intra-Caldera (IC) sequence. IC ignimbrites change rapidly but progressively from pantellerites and comendites to comenditic trachytes and finally to trachytes in a 0.47 Ma time interval. Significantly, the lower pantelleritic part of the IC series is similar to the EC pantellerites (units B, C and D) as expected based on results from Part I. The appearance of a compositional gap in the EC sequence is the result of flows having been trapped within the caldera during the 0.47 Ma Mogan-Fataga transition interval. The transitional IC sequence may be geochemically modelled by mixing of Mogan comendites and Fataga trachytes. The mixing was most probably induced by the high discharge of magma from the compositionally-zoned Tejeda magma body. The rate of change in erupted composition is best explained by imagining a continuous influx of Fataga or parental Fataga magma into a chamber whose previous silicic component (Mogan composition) was no longer being replenished and that the two magmas did not convectively mix prior to eruption. Repose times between successive eruptions in the lower to middle Mogan (from P1/T1 to A) were of order 30 000 a; the upper Mogan pantellerites and comendites/comenditic trachytes (B to F?) erupted once every 125 000 years or so. The longer repose time for the upper units is consistent with their more differentiated character.  相似文献   

11.
针对下刚果盆地中新统重力流沉积演化及其控制因素认识不够明确的问题,利用下刚果盆地X区块丰富的三维地震、测井及岩心资料,在建立中新统层序格架的基础上,精细识别了重力流沉积单元类型,系统揭示了重力流沉积演化特征并探讨了其控制因素。区内中新统可划分为SQ1(下中新统)、SQ2(中中新统下段)、SQ3(中中新统上段)及SQ4(上中新统)等4个三级层序,主要发育块体搬运、重力流水道(包括侵蚀过路水道、受限侵蚀水道、弱受限侵蚀—加积水道)、天然堤及朵叶体等沉积单元。SQ1早期,重力流沉积多在拉张区呈NW—SE向分布,主导沉积单元为朵叶体。SQ2早期,重力流沉积分布较广(呈NW—SE向),主导发育弱受限侵蚀—加积水道。SQ3早期,重力流沉积在研究区北部呈NWW—SEE向发育且以受限侵蚀水道为主。SQ4早期,重力流沉积全区发育(E—W走向),主导发育侵蚀过路水道。SQ1~SQ4,重力流沉积总体北迁、进积。刚果河携带大量物源向深水搬运(气候变冷、构造隆升及海平面下降所致)是重力流沉积大规模进积的第一要素,陆缘结构(掀斜陆架和宽缓陆坡)及陆坡坡度变化(断层及盐构造所致)控制了沉积分散过程和砂体横向分布。该...  相似文献   

12.
对昆仑垭口地区小南川岩体7件样品进行磷灰石裂变径迹年代学测试, 分析了岩体的冷却过程及岩体的剥露与构造地貌演化的关系.结果表明东昆仑山区中新世晚期视剥蚀速率极为缓慢, 为0.020~0.035mm/a, 反映的是构造隆升作用微弱、地貌缓和的地质环境, 因而构造隆升速率与低的视剥蚀速率相当.上新世以来小南川岩体突发性快速隆升冷却, 造成超过3km的物质揭顶, 这不是由单纯的剥蚀过程导致, 而是反映了昆仑山上新世以来的强烈构造隆升驱动下的成山作用过程.岩体上新世的裂变径迹年龄与近东西向的昆仑河-野牛沟谷地断裂断陷、昆仑垭口盆地断陷以及后期西大滩谷地断陷的综合构造地貌演化有密切的成因联系.此外裂变径迹年龄的空间分布格局反映了区域性的差异隆升作用, 由南向北、由西向东, 隆升和剥蚀作用逐渐衰减, 这与东昆仑山南北向以及东、西昆仑山之间地貌发育的差异性以及新生代火山作用分布是吻合的.   相似文献   

13.
Apatite fission track (AFT) thermochronology of seven samples from the Xiaonanchuan (小南川) pluton in the Kunlun (昆仑) pass area was carried out, for the purpose of determining the timing of cooling and the relation between the exhumation and the morphotectonic processes. The AFT ages yield low denudation rates of 0. 020--0. 035 mm/a during the late Miocene, which correspond to a stable geomorphic and weak tectonic uplifting environment. The low denudation rates can be considered as the approximate tectonic uplifting rates. The AFT geochronology shows puroxysmully rapid cooling since the Pliocene and an apparent material unroofing of more than 3 km in the Xiaonanchuan area. This was not the result of simple denudation. The rapid cooling was coupled with the intensive orogeny since the Pliocene, which was driven by tectonic uplifting. The accelerated relief building was accompanied by a series of faulting, which caused the basin and the valley formation and sinking. The space pattern of the AFT ages also shows differential uplifting, which decreases northwardly. This trend is supported by the regional AFT data, which indicate that the exhumation decreases northwardly in eastern Kunlun. This trend also exists in cast-west orientation from the western Kunlun range to the eastern. The uplif- ting trend is also supported by gcomorphic characteristics including the elevation and the relief differences well as the distribution of the Late Cenozoic volcanism.  相似文献   

14.
通过近年来对江苏沿海有影响的台风暴潮作用前后的滩面高程观测,结合台风浪资料分析,探究了江苏中部沿海潮滩对风暴潮的响应过程。结果显示:潮滩剖面在风暴潮期间呈现"低滩侵蚀、沿岸输运、高滩稳定",明显区别于沙质海岸在台风浪作用下"高滩侵蚀、离岸输运、低滩淤积"的演变特征。应用Delft3D平面二维水沙动力数学模型,模拟了正常天气和台风浪情况下的滩面演变,从动力学角度解释了潮滩间不同区域演变特征差异的原因,论证了台风浪对地貌演变的短历时"插曲式"作用,阐明了涨潮优势流是风暴侵蚀后泥沙沿岸向输运的主控因子。  相似文献   

15.
晚中新世以来亚洲季风阶段性演化的海陆记录   总被引:4,自引:0,他引:4  
本文在综合对比晚新生代以来中国黄土高原黄土一红粘土沉积、西北太平洋粉尘沉积、南海有孔虫、阿拉伯海有孔虫记录的基础上,探讨了大约8Ma以来亚洲季风的阶段性演化历史。结果发现,黄土高原粉尘沉积在8Ma前后大规模出现,在3.5Ma前后大幅增加;印度季风在8Ma前后形成(或显著加强);南海ODP1146站位浮游有孔虫Neoglcboquadrina丰度也有两次明显增加,表明海水表面温度不断降低和海洋生产力的增加,指示东亚冬季风作用增强。北太平洋()DP885/886钻孔风成粉尘通量也有增加,指示亚洲内陆进一步的干旱化和冬季风作用的增强。印度洋沉积通量在11Ma前后开始增加。在9~8Ma时出现峰值,表明喜马拉雅山和青藏高原南部逐渐隆起。当隆起达到足够高度时,导致亚洲内陆干旱气候带扩大,同时提供大量粉尘并向东传输到中国北方和北太平洋地区。青藏高原北缘山前盆地的沉积记录显示,在3.6Ma时,高原北部的进一步快速隆升过程可能影响到整个高原,从而导致亚洲内陆更加干旱化,东亚季风增强,粉尘沉积加快,南海及印度洋陆源沉积作用加剧。  相似文献   

16.
深水水道砂体是深海油气的重要储集体之一,其复杂的演化规律常常影响水道砂体储层的分布,无法充分了解深水水道的演化过程是阻碍深海油气勘探开发的原因之一,增大了深海油气的勘探开发难度。以新西兰深水Taranaki盆地中新统深水水道为例,基于高分辨率三维地震数据,应用地震地貌学、地震沉积学的理论及技术手段,探究水道的沉积演化规律及相关控制因素。研究区水道体系可划分为5个发育期次,即残余部分结构的复合水道Ⅰ、侧向迁移的复合水道Ⅱ、垂向叠置的复合水道Ⅲ、富泥充填的复合水道Ⅳ及零散分布的复合水道Ⅴ。复合水道Ⅰ和Ⅳ呈相对顺直的平面形态;复合水道Ⅱ多为侧向迁移运动,表现为高弯曲的平面形态,而复合水道Ⅲ多为垂向叠置运动,其弯曲度较复合水道Ⅱ有所减小;复合水道Ⅴ包括多条零散的细小单水道,不同单水道的平面形态存在较大差异。各期次复合水道的演化过程可归纳为初期下切侵蚀、中期充填沉积及末期填平消亡等3个阶段。深水水道沉积演化过程受多种因素综合控制,早期水道结构会影响后期水道发育环境的限制程度,强限制性的复合水道Ⅰ~Ⅳ经历有序的演化过程,非限制性的复合水道Ⅴ则经历了无序的演化过程;重力流规模及能量的变化会影响各期次...  相似文献   

17.
18.
根据高分辨率地震资料的反射和结构特征,结合地震剖面振幅旋回性变化,将研究区中新统划分为3个层序组及6个三级层序。三个层序组自下而上分别对应三亚组、梅山组及黄流组三个地层组。在层序格架内识别出六种典型的地震相类型:丘状地震相、前积地震相、水道充填地震相、杂乱地震相、波状地震相以及平行—亚平行地震相。三亚组以波状反射和平行—亚平行反射为主;梅山组以丘状反射和波状反射为主,梅山期是生物礁发育的繁盛期;黄流组仍以丘状反射和波状反射为主,但丘状反射规模较梅山组明显减小。中新统整体上表现为一个水进的过程,从滨浅海环境过渡到浅海环境再逐渐过渡到半深海环境,发育有扇三角洲、生物礁滩以及水道沉积体系,而地震相的分布和演化明显受沉积体系演化的控制。生物礁和水道沉积可能是该区的有利储层。  相似文献   

19.
以高精度三维地震资料为基础,结合深水水道成因机制和水道截面形态特征,将下刚果盆地A区块中新统深水水道分为侵蚀型、侵蚀加积型和加积型三类,并进一步细分为九种亚类。该分类体现了A区块深水水道从近源至远源方向的横向展布特征。从近源至远源,流体动力条件逐渐减弱,水道形态演化过程为限制性-非限制性-限制性-前端朵叶,水道宽深比和弯曲度均逐渐变大。通过对每个三级层序均方根振幅属性图的分析,并结合海平面升降和构造抬升作用,可见刚果扇不断由南向北迁移及向盆地方向进积,层序自下而上并由南向北,整体由加积水道和远端朵叶沉积向侵蚀加积水道和侵蚀水道沉积转变。  相似文献   

20.
Dextral-slip in the Nyainqentangiha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentangiha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentangiha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhunzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, Damxung-Yangbajain and Angan graben systems that pass east of the Nyainqentangiha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号